Davydov–Yetter cohomology and relative homological algebra
Davydov–Yetter (DY) cohomology classifies infinitesimal deformations of the monoidal structure of tensor functors and tensor categories. In this paper we provide new tools for the computation of the DY cohomology for finite tensor categories and exact functors between them. The key point is to reali...
Gespeichert in:
Veröffentlicht in: | Selecta mathematica (Basel, Switzerland) Switzerland), 2024-04, Vol.30 (2), Article 26 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Selecta mathematica (Basel, Switzerland) |
container_volume | 30 |
creator | Faitg, M. Gainutdinov, A. M. Schweigert, C. |
description | Davydov–Yetter (DY) cohomology classifies infinitesimal deformations of the monoidal structure of tensor functors and tensor categories. In this paper we provide new tools for the computation of the DY cohomology for finite tensor categories and exact functors between them. The key point is to realize DY cohomology as relative Ext groups. In particular, we prove that the infinitesimal deformations of a tensor category
C
are classified by the 3-rd self-extension group of the tensor unit of the Drinfeld center
Z
(
C
)
relative to
C
. From classical results on relative homological algebra we get a long exact sequence for DY cohomology and a Yoneda product for which we provide an explicit formula. Using the long exact sequence and duality, we obtain a dimension formula for the cohomology groups based solely on relatively projective covers which reduces a problem in homological algebra to a problem in representation theory, e.g. calculating the space of invariants in a certain object of
Z
(
C
)
. Thanks to the Yoneda product, we also develop a method for computing DY cocycles explicitly which are needed for applications in the deformation theory. We apply these tools to the category of finite-dimensional modules over a finite-dimensional Hopf algebra. We study in detail the examples of the bosonization of exterior algebras
Λ
C
k
⋊
C
[
Z
2
]
, the Taft algebras and the small quantum group of
sl
2
at a root of unity. |
doi_str_mv | 10.1007/s00029-024-00917-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03874150v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2929956830</sourcerecordid><originalsourceid>FETCH-LOGICAL-c304t-ee27b6119bf9bbc6fd3b699c4ad8394f329f40cd98f5bd3de885b34cedb538c13</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsv4GrAlYvoyWVmEnBT6qVCwY0uXIXcpp0ybWoyLXTnO_iGPolTR3Tn6hwO3_9z-BA6J3BFAMrrBABUYqAcA0hS4vIADQingCVQOOx2oBQTQfkxOklp0eEFpTBAN7d6u3Nh-_n-8erb1sfMhnlYhibMdpleuSz6Rrf11mc_19rqJtPNzJuoT9FRpZvkz37mEL3c3z2PJ3j69PA4Hk2xZcBb7D0tTUGINJU0xhaVY6aQ0nLtBJO8YlRWHKyTosqNY84LkRvGrXcmZ8ISNkSXfe9cN2od66WOOxV0rSajqdrfgImSkxy2e_aiZ9cxvG18atUibOKqe09RSaXMC8Ggo2hP2RhSir76rSWg9kZVb1R1RtW3UVV2IdaHUgevZj7-Vf-T-gIYGnlx</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2929956830</pqid></control><display><type>article</type><title>Davydov–Yetter cohomology and relative homological algebra</title><source>SpringerLink Journals - AutoHoldings</source><creator>Faitg, M. ; Gainutdinov, A. M. ; Schweigert, C.</creator><creatorcontrib>Faitg, M. ; Gainutdinov, A. M. ; Schweigert, C.</creatorcontrib><description>Davydov–Yetter (DY) cohomology classifies infinitesimal deformations of the monoidal structure of tensor functors and tensor categories. In this paper we provide new tools for the computation of the DY cohomology for finite tensor categories and exact functors between them. The key point is to realize DY cohomology as relative Ext groups. In particular, we prove that the infinitesimal deformations of a tensor category
C
are classified by the 3-rd self-extension group of the tensor unit of the Drinfeld center
Z
(
C
)
relative to
C
. From classical results on relative homological algebra we get a long exact sequence for DY cohomology and a Yoneda product for which we provide an explicit formula. Using the long exact sequence and duality, we obtain a dimension formula for the cohomology groups based solely on relatively projective covers which reduces a problem in homological algebra to a problem in representation theory, e.g. calculating the space of invariants in a certain object of
Z
(
C
)
. Thanks to the Yoneda product, we also develop a method for computing DY cocycles explicitly which are needed for applications in the deformation theory. We apply these tools to the category of finite-dimensional modules over a finite-dimensional Hopf algebra. We study in detail the examples of the bosonization of exterior algebras
Λ
C
k
⋊
C
[
Z
2
]
, the Taft algebras and the small quantum group of
sl
2
at a root of unity.</description><identifier>ISSN: 1022-1824</identifier><identifier>EISSN: 1420-9020</identifier><identifier>DOI: 10.1007/s00029-024-00917-7</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algebra ; Category Theory ; Deformation ; Homology ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Quantum Algebra ; Tensors</subject><ispartof>Selecta mathematica (Basel, Switzerland), 2024-04, Vol.30 (2), Article 26</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c304t-ee27b6119bf9bbc6fd3b699c4ad8394f329f40cd98f5bd3de885b34cedb538c13</cites><orcidid>0000-0003-3127-682X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00029-024-00917-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00029-024-00917-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03874150$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Faitg, M.</creatorcontrib><creatorcontrib>Gainutdinov, A. M.</creatorcontrib><creatorcontrib>Schweigert, C.</creatorcontrib><title>Davydov–Yetter cohomology and relative homological algebra</title><title>Selecta mathematica (Basel, Switzerland)</title><addtitle>Sel. Math. New Ser</addtitle><description>Davydov–Yetter (DY) cohomology classifies infinitesimal deformations of the monoidal structure of tensor functors and tensor categories. In this paper we provide new tools for the computation of the DY cohomology for finite tensor categories and exact functors between them. The key point is to realize DY cohomology as relative Ext groups. In particular, we prove that the infinitesimal deformations of a tensor category
C
are classified by the 3-rd self-extension group of the tensor unit of the Drinfeld center
Z
(
C
)
relative to
C
. From classical results on relative homological algebra we get a long exact sequence for DY cohomology and a Yoneda product for which we provide an explicit formula. Using the long exact sequence and duality, we obtain a dimension formula for the cohomology groups based solely on relatively projective covers which reduces a problem in homological algebra to a problem in representation theory, e.g. calculating the space of invariants in a certain object of
Z
(
C
)
. Thanks to the Yoneda product, we also develop a method for computing DY cocycles explicitly which are needed for applications in the deformation theory. We apply these tools to the category of finite-dimensional modules over a finite-dimensional Hopf algebra. We study in detail the examples of the bosonization of exterior algebras
Λ
C
k
⋊
C
[
Z
2
]
, the Taft algebras and the small quantum group of
sl
2
at a root of unity.</description><subject>Algebra</subject><subject>Category Theory</subject><subject>Deformation</subject><subject>Homology</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Quantum Algebra</subject><subject>Tensors</subject><issn>1022-1824</issn><issn>1420-9020</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKsv4GrAlYvoyWVmEnBT6qVCwY0uXIXcpp0ybWoyLXTnO_iGPolTR3Tn6hwO3_9z-BA6J3BFAMrrBABUYqAcA0hS4vIADQingCVQOOx2oBQTQfkxOklp0eEFpTBAN7d6u3Nh-_n-8erb1sfMhnlYhibMdpleuSz6Rrf11mc_19rqJtPNzJuoT9FRpZvkz37mEL3c3z2PJ3j69PA4Hk2xZcBb7D0tTUGINJU0xhaVY6aQ0nLtBJO8YlRWHKyTosqNY84LkRvGrXcmZ8ISNkSXfe9cN2od66WOOxV0rSajqdrfgImSkxy2e_aiZ9cxvG18atUibOKqe09RSaXMC8Ggo2hP2RhSir76rSWg9kZVb1R1RtW3UVV2IdaHUgevZj7-Vf-T-gIYGnlx</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Faitg, M.</creator><creator>Gainutdinov, A. M.</creator><creator>Schweigert, C.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-3127-682X</orcidid></search><sort><creationdate>20240401</creationdate><title>Davydov–Yetter cohomology and relative homological algebra</title><author>Faitg, M. ; Gainutdinov, A. M. ; Schweigert, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c304t-ee27b6119bf9bbc6fd3b699c4ad8394f329f40cd98f5bd3de885b34cedb538c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algebra</topic><topic>Category Theory</topic><topic>Deformation</topic><topic>Homology</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Quantum Algebra</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Faitg, M.</creatorcontrib><creatorcontrib>Gainutdinov, A. M.</creatorcontrib><creatorcontrib>Schweigert, C.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Selecta mathematica (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Faitg, M.</au><au>Gainutdinov, A. M.</au><au>Schweigert, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Davydov–Yetter cohomology and relative homological algebra</atitle><jtitle>Selecta mathematica (Basel, Switzerland)</jtitle><stitle>Sel. Math. New Ser</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>30</volume><issue>2</issue><artnum>26</artnum><issn>1022-1824</issn><eissn>1420-9020</eissn><abstract>Davydov–Yetter (DY) cohomology classifies infinitesimal deformations of the monoidal structure of tensor functors and tensor categories. In this paper we provide new tools for the computation of the DY cohomology for finite tensor categories and exact functors between them. The key point is to realize DY cohomology as relative Ext groups. In particular, we prove that the infinitesimal deformations of a tensor category
C
are classified by the 3-rd self-extension group of the tensor unit of the Drinfeld center
Z
(
C
)
relative to
C
. From classical results on relative homological algebra we get a long exact sequence for DY cohomology and a Yoneda product for which we provide an explicit formula. Using the long exact sequence and duality, we obtain a dimension formula for the cohomology groups based solely on relatively projective covers which reduces a problem in homological algebra to a problem in representation theory, e.g. calculating the space of invariants in a certain object of
Z
(
C
)
. Thanks to the Yoneda product, we also develop a method for computing DY cocycles explicitly which are needed for applications in the deformation theory. We apply these tools to the category of finite-dimensional modules over a finite-dimensional Hopf algebra. We study in detail the examples of the bosonization of exterior algebras
Λ
C
k
⋊
C
[
Z
2
]
, the Taft algebras and the small quantum group of
sl
2
at a root of unity.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00029-024-00917-7</doi><orcidid>https://orcid.org/0000-0003-3127-682X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1022-1824 |
ispartof | Selecta mathematica (Basel, Switzerland), 2024-04, Vol.30 (2), Article 26 |
issn | 1022-1824 1420-9020 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03874150v1 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algebra Category Theory Deformation Homology Mathematical analysis Mathematics Mathematics and Statistics Quantum Algebra Tensors |
title | Davydov–Yetter cohomology and relative homological algebra |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T09%3A38%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Davydov%E2%80%93Yetter%20cohomology%20and%20relative%20homological%20algebra&rft.jtitle=Selecta%20mathematica%20(Basel,%20Switzerland)&rft.au=Faitg,%20M.&rft.date=2024-04-01&rft.volume=30&rft.issue=2&rft.artnum=26&rft.issn=1022-1824&rft.eissn=1420-9020&rft_id=info:doi/10.1007/s00029-024-00917-7&rft_dat=%3Cproquest_hal_p%3E2929956830%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2929956830&rft_id=info:pmid/&rfr_iscdi=true |