Existence of Minimizers for the Dirac–Fock Model of Crystals

Whereas many different models exist in mathematics and physics for the ground states of non-relativistic crystals, the relativistic case has been much less studied, and we are not aware of any mathematical result on a fully relativistic treatment of crystals. In this paper, we introduce a mean-field...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archive for rational mechanics and analysis 2024-08, Vol.248 (4), p.63, Article 63
Hauptverfasser: Catto, Isabelle, Meng, Long, Paturel, Éric, Séré, Éric
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 63
container_title Archive for rational mechanics and analysis
container_volume 248
creator Catto, Isabelle
Meng, Long
Paturel, Éric
Séré, Éric
description Whereas many different models exist in mathematics and physics for the ground states of non-relativistic crystals, the relativistic case has been much less studied, and we are not aware of any mathematical result on a fully relativistic treatment of crystals. In this paper, we introduce a mean-field relativistic energy for crystals in terms of periodic density matrices. This model is inspired both from a recent definition of the Dirac–Fock ground state for atoms and molecules, due to one of us, and from the non-relativistic Hartree–Fock model for crystals. We prove the existence of a ground state when the number of electrons per cell is not too large.
doi_str_mv 10.1007/s00205-024-01988-8
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03871041v5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3072077105</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-1b619d9b85f86d92cf8ff059fe6ae7a2b830f5b9f8c88ef62a00058b827cd46c3</originalsourceid><addsrcrecordid>eNp9kLFOwzAYhC0EEqXwAkyRmBgMv-0kdhakqrQUqRULzJbj2DSlrYudIsrEO_CGPAkOQbAxnf5f351Oh9ApgQsCwC8DAIUMA00xkEIILPZQj6SMYsg520c9AGC4yCg_REchLNqTsryHrkavdWjMWpvE2WRWr-tV_WZ8SKzzSTM3yXXtlf58_xg7_ZTMXGWWLTj0u9CoZThGBzaKOfnRPnoYj-6HEzy9u7kdDqZYs1Q0mJQ5KaqiFJkVeVVQbYW1kBXW5MpwRUvBwGZlYYUWwticqlgwE6WgXFdprlkfnXe5c7WUG1-vlN9Jp2o5GUxl-wMmOIGUvGSRPevYjXfPWxMauXBbv471JANOgUewpWhHae9C8Mb-xhKQ7aay21TGTeX3plJEE-tMIcLrR-P_ov9xfQFG2XiK</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3072077105</pqid></control><display><type>article</type><title>Existence of Minimizers for the Dirac–Fock Model of Crystals</title><source>SpringerLink Journals</source><creator>Catto, Isabelle ; Meng, Long ; Paturel, Éric ; Séré, Éric</creator><creatorcontrib>Catto, Isabelle ; Meng, Long ; Paturel, Éric ; Séré, Éric</creatorcontrib><description>Whereas many different models exist in mathematics and physics for the ground states of non-relativistic crystals, the relativistic case has been much less studied, and we are not aware of any mathematical result on a fully relativistic treatment of crystals. In this paper, we introduce a mean-field relativistic energy for crystals in terms of periodic density matrices. This model is inspired both from a recent definition of the Dirac–Fock ground state for atoms and molecules, due to one of us, and from the non-relativistic Hartree–Fock model for crystals. We prove the existence of a ground state when the number of electrons per cell is not too large.</description><identifier>ISSN: 0003-9527</identifier><identifier>EISSN: 1432-0673</identifier><identifier>DOI: 10.1007/s00205-024-01988-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis of PDEs ; Approximation ; Atoms &amp; subatomic particles ; Classical Mechanics ; Complex Systems ; Crystals ; Digital Object Identifier ; Energy ; Fluid- and Aerodynamics ; Ground state ; Mathematical and Computational Physics ; Mathematical Physics ; Mathematics ; Physics ; Physics and Astronomy ; Quantum Physics ; Relativistic effects ; Theoretical</subject><ispartof>Archive for rational mechanics and analysis, 2024-08, Vol.248 (4), p.63, Article 63</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c348t-1b619d9b85f86d92cf8ff059fe6ae7a2b830f5b9f8c88ef62a00058b827cd46c3</cites><orcidid>0000-0003-2453-3672 ; 0000-0002-5463-2340</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00205-024-01988-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00205-024-01988-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03871041$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Catto, Isabelle</creatorcontrib><creatorcontrib>Meng, Long</creatorcontrib><creatorcontrib>Paturel, Éric</creatorcontrib><creatorcontrib>Séré, Éric</creatorcontrib><title>Existence of Minimizers for the Dirac–Fock Model of Crystals</title><title>Archive for rational mechanics and analysis</title><addtitle>Arch Rational Mech Anal</addtitle><description>Whereas many different models exist in mathematics and physics for the ground states of non-relativistic crystals, the relativistic case has been much less studied, and we are not aware of any mathematical result on a fully relativistic treatment of crystals. In this paper, we introduce a mean-field relativistic energy for crystals in terms of periodic density matrices. This model is inspired both from a recent definition of the Dirac–Fock ground state for atoms and molecules, due to one of us, and from the non-relativistic Hartree–Fock model for crystals. We prove the existence of a ground state when the number of electrons per cell is not too large.</description><subject>Analysis of PDEs</subject><subject>Approximation</subject><subject>Atoms &amp; subatomic particles</subject><subject>Classical Mechanics</subject><subject>Complex Systems</subject><subject>Crystals</subject><subject>Digital Object Identifier</subject><subject>Energy</subject><subject>Fluid- and Aerodynamics</subject><subject>Ground state</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Physics</subject><subject>Mathematics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Relativistic effects</subject><subject>Theoretical</subject><issn>0003-9527</issn><issn>1432-0673</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kLFOwzAYhC0EEqXwAkyRmBgMv-0kdhakqrQUqRULzJbj2DSlrYudIsrEO_CGPAkOQbAxnf5f351Oh9ApgQsCwC8DAIUMA00xkEIILPZQj6SMYsg520c9AGC4yCg_REchLNqTsryHrkavdWjMWpvE2WRWr-tV_WZ8SKzzSTM3yXXtlf58_xg7_ZTMXGWWLTj0u9CoZThGBzaKOfnRPnoYj-6HEzy9u7kdDqZYs1Q0mJQ5KaqiFJkVeVVQbYW1kBXW5MpwRUvBwGZlYYUWwticqlgwE6WgXFdprlkfnXe5c7WUG1-vlN9Jp2o5GUxl-wMmOIGUvGSRPevYjXfPWxMauXBbv471JANOgUewpWhHae9C8Mb-xhKQ7aay21TGTeX3plJEE-tMIcLrR-P_ov9xfQFG2XiK</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Catto, Isabelle</creator><creator>Meng, Long</creator><creator>Paturel, Éric</creator><creator>Séré, Éric</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-2453-3672</orcidid><orcidid>https://orcid.org/0000-0002-5463-2340</orcidid></search><sort><creationdate>20240801</creationdate><title>Existence of Minimizers for the Dirac–Fock Model of Crystals</title><author>Catto, Isabelle ; Meng, Long ; Paturel, Éric ; Séré, Éric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-1b619d9b85f86d92cf8ff059fe6ae7a2b830f5b9f8c88ef62a00058b827cd46c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Analysis of PDEs</topic><topic>Approximation</topic><topic>Atoms &amp; subatomic particles</topic><topic>Classical Mechanics</topic><topic>Complex Systems</topic><topic>Crystals</topic><topic>Digital Object Identifier</topic><topic>Energy</topic><topic>Fluid- and Aerodynamics</topic><topic>Ground state</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Physics</topic><topic>Mathematics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Relativistic effects</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Catto, Isabelle</creatorcontrib><creatorcontrib>Meng, Long</creatorcontrib><creatorcontrib>Paturel, Éric</creatorcontrib><creatorcontrib>Séré, Éric</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Archive for rational mechanics and analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Catto, Isabelle</au><au>Meng, Long</au><au>Paturel, Éric</au><au>Séré, Éric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Existence of Minimizers for the Dirac–Fock Model of Crystals</atitle><jtitle>Archive for rational mechanics and analysis</jtitle><stitle>Arch Rational Mech Anal</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>248</volume><issue>4</issue><spage>63</spage><pages>63-</pages><artnum>63</artnum><issn>0003-9527</issn><eissn>1432-0673</eissn><abstract>Whereas many different models exist in mathematics and physics for the ground states of non-relativistic crystals, the relativistic case has been much less studied, and we are not aware of any mathematical result on a fully relativistic treatment of crystals. In this paper, we introduce a mean-field relativistic energy for crystals in terms of periodic density matrices. This model is inspired both from a recent definition of the Dirac–Fock ground state for atoms and molecules, due to one of us, and from the non-relativistic Hartree–Fock model for crystals. We prove the existence of a ground state when the number of electrons per cell is not too large.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00205-024-01988-8</doi><orcidid>https://orcid.org/0000-0003-2453-3672</orcidid><orcidid>https://orcid.org/0000-0002-5463-2340</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-9527
ispartof Archive for rational mechanics and analysis, 2024-08, Vol.248 (4), p.63, Article 63
issn 0003-9527
1432-0673
language eng
recordid cdi_hal_primary_oai_HAL_hal_03871041v5
source SpringerLink Journals
subjects Analysis of PDEs
Approximation
Atoms & subatomic particles
Classical Mechanics
Complex Systems
Crystals
Digital Object Identifier
Energy
Fluid- and Aerodynamics
Ground state
Mathematical and Computational Physics
Mathematical Physics
Mathematics
Physics
Physics and Astronomy
Quantum Physics
Relativistic effects
Theoretical
title Existence of Minimizers for the Dirac–Fock Model of Crystals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T08%3A30%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Existence%20of%20Minimizers%20for%20the%20Dirac%E2%80%93Fock%20Model%20of%20Crystals&rft.jtitle=Archive%20for%20rational%20mechanics%20and%20analysis&rft.au=Catto,%20Isabelle&rft.date=2024-08-01&rft.volume=248&rft.issue=4&rft.spage=63&rft.pages=63-&rft.artnum=63&rft.issn=0003-9527&rft.eissn=1432-0673&rft_id=info:doi/10.1007/s00205-024-01988-8&rft_dat=%3Cproquest_hal_p%3E3072077105%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3072077105&rft_id=info:pmid/&rfr_iscdi=true