Existence of Minimizers for the Dirac–Fock Model of Crystals
Whereas many different models exist in mathematics and physics for the ground states of non-relativistic crystals, the relativistic case has been much less studied, and we are not aware of any mathematical result on a fully relativistic treatment of crystals. In this paper, we introduce a mean-field...
Gespeichert in:
Veröffentlicht in: | Archive for rational mechanics and analysis 2024-08, Vol.248 (4), p.63, Article 63 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | 63 |
container_title | Archive for rational mechanics and analysis |
container_volume | 248 |
creator | Catto, Isabelle Meng, Long Paturel, Éric Séré, Éric |
description | Whereas many different models exist in mathematics and physics for the ground states of non-relativistic crystals, the relativistic case has been much less studied, and we are not aware of any mathematical result on a fully relativistic treatment of crystals. In this paper, we introduce a mean-field relativistic energy for crystals in terms of periodic density matrices. This model is inspired both from a recent definition of the Dirac–Fock ground state for atoms and molecules, due to one of us, and from the non-relativistic Hartree–Fock model for crystals. We prove the existence of a ground state when the number of electrons per cell is not too large. |
doi_str_mv | 10.1007/s00205-024-01988-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03871041v5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3072077105</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-1b619d9b85f86d92cf8ff059fe6ae7a2b830f5b9f8c88ef62a00058b827cd46c3</originalsourceid><addsrcrecordid>eNp9kLFOwzAYhC0EEqXwAkyRmBgMv-0kdhakqrQUqRULzJbj2DSlrYudIsrEO_CGPAkOQbAxnf5f351Oh9ApgQsCwC8DAIUMA00xkEIILPZQj6SMYsg520c9AGC4yCg_REchLNqTsryHrkavdWjMWpvE2WRWr-tV_WZ8SKzzSTM3yXXtlf58_xg7_ZTMXGWWLTj0u9CoZThGBzaKOfnRPnoYj-6HEzy9u7kdDqZYs1Q0mJQ5KaqiFJkVeVVQbYW1kBXW5MpwRUvBwGZlYYUWwticqlgwE6WgXFdprlkfnXe5c7WUG1-vlN9Jp2o5GUxl-wMmOIGUvGSRPevYjXfPWxMauXBbv471JANOgUewpWhHae9C8Mb-xhKQ7aay21TGTeX3plJEE-tMIcLrR-P_ov9xfQFG2XiK</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3072077105</pqid></control><display><type>article</type><title>Existence of Minimizers for the Dirac–Fock Model of Crystals</title><source>SpringerLink Journals</source><creator>Catto, Isabelle ; Meng, Long ; Paturel, Éric ; Séré, Éric</creator><creatorcontrib>Catto, Isabelle ; Meng, Long ; Paturel, Éric ; Séré, Éric</creatorcontrib><description>Whereas many different models exist in mathematics and physics for the ground states of non-relativistic crystals, the relativistic case has been much less studied, and we are not aware of any mathematical result on a fully relativistic treatment of crystals. In this paper, we introduce a mean-field relativistic energy for crystals in terms of periodic density matrices. This model is inspired both from a recent definition of the Dirac–Fock ground state for atoms and molecules, due to one of us, and from the non-relativistic Hartree–Fock model for crystals. We prove the existence of a ground state when the number of electrons per cell is not too large.</description><identifier>ISSN: 0003-9527</identifier><identifier>EISSN: 1432-0673</identifier><identifier>DOI: 10.1007/s00205-024-01988-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis of PDEs ; Approximation ; Atoms & subatomic particles ; Classical Mechanics ; Complex Systems ; Crystals ; Digital Object Identifier ; Energy ; Fluid- and Aerodynamics ; Ground state ; Mathematical and Computational Physics ; Mathematical Physics ; Mathematics ; Physics ; Physics and Astronomy ; Quantum Physics ; Relativistic effects ; Theoretical</subject><ispartof>Archive for rational mechanics and analysis, 2024-08, Vol.248 (4), p.63, Article 63</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c348t-1b619d9b85f86d92cf8ff059fe6ae7a2b830f5b9f8c88ef62a00058b827cd46c3</cites><orcidid>0000-0003-2453-3672 ; 0000-0002-5463-2340</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00205-024-01988-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00205-024-01988-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03871041$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Catto, Isabelle</creatorcontrib><creatorcontrib>Meng, Long</creatorcontrib><creatorcontrib>Paturel, Éric</creatorcontrib><creatorcontrib>Séré, Éric</creatorcontrib><title>Existence of Minimizers for the Dirac–Fock Model of Crystals</title><title>Archive for rational mechanics and analysis</title><addtitle>Arch Rational Mech Anal</addtitle><description>Whereas many different models exist in mathematics and physics for the ground states of non-relativistic crystals, the relativistic case has been much less studied, and we are not aware of any mathematical result on a fully relativistic treatment of crystals. In this paper, we introduce a mean-field relativistic energy for crystals in terms of periodic density matrices. This model is inspired both from a recent definition of the Dirac–Fock ground state for atoms and molecules, due to one of us, and from the non-relativistic Hartree–Fock model for crystals. We prove the existence of a ground state when the number of electrons per cell is not too large.</description><subject>Analysis of PDEs</subject><subject>Approximation</subject><subject>Atoms & subatomic particles</subject><subject>Classical Mechanics</subject><subject>Complex Systems</subject><subject>Crystals</subject><subject>Digital Object Identifier</subject><subject>Energy</subject><subject>Fluid- and Aerodynamics</subject><subject>Ground state</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Physics</subject><subject>Mathematics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Relativistic effects</subject><subject>Theoretical</subject><issn>0003-9527</issn><issn>1432-0673</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kLFOwzAYhC0EEqXwAkyRmBgMv-0kdhakqrQUqRULzJbj2DSlrYudIsrEO_CGPAkOQbAxnf5f351Oh9ApgQsCwC8DAIUMA00xkEIILPZQj6SMYsg520c9AGC4yCg_REchLNqTsryHrkavdWjMWpvE2WRWr-tV_WZ8SKzzSTM3yXXtlf58_xg7_ZTMXGWWLTj0u9CoZThGBzaKOfnRPnoYj-6HEzy9u7kdDqZYs1Q0mJQ5KaqiFJkVeVVQbYW1kBXW5MpwRUvBwGZlYYUWwticqlgwE6WgXFdprlkfnXe5c7WUG1-vlN9Jp2o5GUxl-wMmOIGUvGSRPevYjXfPWxMauXBbv471JANOgUewpWhHae9C8Mb-xhKQ7aay21TGTeX3plJEE-tMIcLrR-P_ov9xfQFG2XiK</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Catto, Isabelle</creator><creator>Meng, Long</creator><creator>Paturel, Éric</creator><creator>Séré, Éric</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-2453-3672</orcidid><orcidid>https://orcid.org/0000-0002-5463-2340</orcidid></search><sort><creationdate>20240801</creationdate><title>Existence of Minimizers for the Dirac–Fock Model of Crystals</title><author>Catto, Isabelle ; Meng, Long ; Paturel, Éric ; Séré, Éric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-1b619d9b85f86d92cf8ff059fe6ae7a2b830f5b9f8c88ef62a00058b827cd46c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Analysis of PDEs</topic><topic>Approximation</topic><topic>Atoms & subatomic particles</topic><topic>Classical Mechanics</topic><topic>Complex Systems</topic><topic>Crystals</topic><topic>Digital Object Identifier</topic><topic>Energy</topic><topic>Fluid- and Aerodynamics</topic><topic>Ground state</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Physics</topic><topic>Mathematics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Relativistic effects</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Catto, Isabelle</creatorcontrib><creatorcontrib>Meng, Long</creatorcontrib><creatorcontrib>Paturel, Éric</creatorcontrib><creatorcontrib>Séré, Éric</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Archive for rational mechanics and analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Catto, Isabelle</au><au>Meng, Long</au><au>Paturel, Éric</au><au>Séré, Éric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Existence of Minimizers for the Dirac–Fock Model of Crystals</atitle><jtitle>Archive for rational mechanics and analysis</jtitle><stitle>Arch Rational Mech Anal</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>248</volume><issue>4</issue><spage>63</spage><pages>63-</pages><artnum>63</artnum><issn>0003-9527</issn><eissn>1432-0673</eissn><abstract>Whereas many different models exist in mathematics and physics for the ground states of non-relativistic crystals, the relativistic case has been much less studied, and we are not aware of any mathematical result on a fully relativistic treatment of crystals. In this paper, we introduce a mean-field relativistic energy for crystals in terms of periodic density matrices. This model is inspired both from a recent definition of the Dirac–Fock ground state for atoms and molecules, due to one of us, and from the non-relativistic Hartree–Fock model for crystals. We prove the existence of a ground state when the number of electrons per cell is not too large.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00205-024-01988-8</doi><orcidid>https://orcid.org/0000-0003-2453-3672</orcidid><orcidid>https://orcid.org/0000-0002-5463-2340</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-9527 |
ispartof | Archive for rational mechanics and analysis, 2024-08, Vol.248 (4), p.63, Article 63 |
issn | 0003-9527 1432-0673 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03871041v5 |
source | SpringerLink Journals |
subjects | Analysis of PDEs Approximation Atoms & subatomic particles Classical Mechanics Complex Systems Crystals Digital Object Identifier Energy Fluid- and Aerodynamics Ground state Mathematical and Computational Physics Mathematical Physics Mathematics Physics Physics and Astronomy Quantum Physics Relativistic effects Theoretical |
title | Existence of Minimizers for the Dirac–Fock Model of Crystals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T08%3A30%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Existence%20of%20Minimizers%20for%20the%20Dirac%E2%80%93Fock%20Model%20of%20Crystals&rft.jtitle=Archive%20for%20rational%20mechanics%20and%20analysis&rft.au=Catto,%20Isabelle&rft.date=2024-08-01&rft.volume=248&rft.issue=4&rft.spage=63&rft.pages=63-&rft.artnum=63&rft.issn=0003-9527&rft.eissn=1432-0673&rft_id=info:doi/10.1007/s00205-024-01988-8&rft_dat=%3Cproquest_hal_p%3E3072077105%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3072077105&rft_id=info:pmid/&rfr_iscdi=true |