Logarithmic Sobolev and interpolation inequalities on the sphere: Constructive stability results

We consider Gagliardo–Nirenberg inequalities on the sphere which interpolate between the Poincaré inequality and the Sobolev inequality, and include the logarithmic Sobolev inequality as a special case. We establish explicit stability results in the subcritical regime using spectral decomposition te...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annales de l'Institut Henri Poincaré. Analyse non linéaire 2024-09, Vol.41 (5), p.1289-1321
Hauptverfasser: Brigati, Giovanni, Dolbeault, Jean, Simonov, Nikita
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1321
container_issue 5
container_start_page 1289
container_title Annales de l'Institut Henri Poincaré. Analyse non linéaire
container_volume 41
creator Brigati, Giovanni
Dolbeault, Jean
Simonov, Nikita
description We consider Gagliardo–Nirenberg inequalities on the sphere which interpolate between the Poincaré inequality and the Sobolev inequality, and include the logarithmic Sobolev inequality as a special case. We establish explicit stability results in the subcritical regime using spectral decomposition techniques, and entropy and carré du champ methods applied to nonlinear diffusion flows.
doi_str_mv 10.4171/aihpc/106
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03868496v4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_03868496v4</sourcerecordid><originalsourceid>FETCH-LOGICAL-c228t-f1f45f7174986a6435c9fca7265c899bae15ea5408d166d773c0e7c308f87a673</originalsourceid><addsrcrecordid>eNpFkD9PwzAUxC0EEqUw8A28MoTaseM_bFUFLVIkBmAOr65NjNI42G6lfntSQDDd-53u3XAIXVNyy6mkM_DtYGaUiBM0oUqygnJGTtGElJqPN9fn6CKlD0KIJJWYoLc6vEP0ud16g5_DOnR2j6HfYN9nG4fQQfahH8l-7qDz2duER86txWlobbR3eBH6lOPOZL8fzQxrP-YOONq063K6RGcOumSvfnWKXh_uXxaron5aPi7mdWHKUuXCUccrJ6nkWgkQnFVGOwOyFJVRWq_B0spCxYnaUCE2UjJDrDSMKKckCMmm6Oant4WuGaLfQjw0AXyzmtfN0SNMCcW12PP_rIkhpWjd3wMlzXHG5nvGkQT7AoOEZ2Y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Logarithmic Sobolev and interpolation inequalities on the sphere: Constructive stability results</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Brigati, Giovanni ; Dolbeault, Jean ; Simonov, Nikita</creator><creatorcontrib>Brigati, Giovanni ; Dolbeault, Jean ; Simonov, Nikita</creatorcontrib><description>We consider Gagliardo–Nirenberg inequalities on the sphere which interpolate between the Poincaré inequality and the Sobolev inequality, and include the logarithmic Sobolev inequality as a special case. We establish explicit stability results in the subcritical regime using spectral decomposition techniques, and entropy and carré du champ methods applied to nonlinear diffusion flows.</description><identifier>ISSN: 0294-1449</identifier><identifier>EISSN: 1873-1430</identifier><identifier>DOI: 10.4171/aihpc/106</identifier><language>eng</language><publisher>EMS</publisher><subject>Analysis of PDEs ; Mathematics</subject><ispartof>Annales de l'Institut Henri Poincaré. Analyse non linéaire, 2024-09, Vol.41 (5), p.1289-1321</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c228t-f1f45f7174986a6435c9fca7265c899bae15ea5408d166d773c0e7c308f87a673</citedby><orcidid>0000-0003-4234-2298 ; 0000-0002-3241-190X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,865,886,27929,27930</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03868496$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Brigati, Giovanni</creatorcontrib><creatorcontrib>Dolbeault, Jean</creatorcontrib><creatorcontrib>Simonov, Nikita</creatorcontrib><title>Logarithmic Sobolev and interpolation inequalities on the sphere: Constructive stability results</title><title>Annales de l'Institut Henri Poincaré. Analyse non linéaire</title><description>We consider Gagliardo–Nirenberg inequalities on the sphere which interpolate between the Poincaré inequality and the Sobolev inequality, and include the logarithmic Sobolev inequality as a special case. We establish explicit stability results in the subcritical regime using spectral decomposition techniques, and entropy and carré du champ methods applied to nonlinear diffusion flows.</description><subject>Analysis of PDEs</subject><subject>Mathematics</subject><issn>0294-1449</issn><issn>1873-1430</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpFkD9PwzAUxC0EEqUw8A28MoTaseM_bFUFLVIkBmAOr65NjNI42G6lfntSQDDd-53u3XAIXVNyy6mkM_DtYGaUiBM0oUqygnJGTtGElJqPN9fn6CKlD0KIJJWYoLc6vEP0ud16g5_DOnR2j6HfYN9nG4fQQfahH8l-7qDz2duER86txWlobbR3eBH6lOPOZL8fzQxrP-YOONq063K6RGcOumSvfnWKXh_uXxaron5aPi7mdWHKUuXCUccrJ6nkWgkQnFVGOwOyFJVRWq_B0spCxYnaUCE2UjJDrDSMKKckCMmm6Oant4WuGaLfQjw0AXyzmtfN0SNMCcW12PP_rIkhpWjd3wMlzXHG5nvGkQT7AoOEZ2Y</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Brigati, Giovanni</creator><creator>Dolbeault, Jean</creator><creator>Simonov, Nikita</creator><general>EMS</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-4234-2298</orcidid><orcidid>https://orcid.org/0000-0002-3241-190X</orcidid></search><sort><creationdate>20240901</creationdate><title>Logarithmic Sobolev and interpolation inequalities on the sphere: Constructive stability results</title><author>Brigati, Giovanni ; Dolbeault, Jean ; Simonov, Nikita</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c228t-f1f45f7174986a6435c9fca7265c899bae15ea5408d166d773c0e7c308f87a673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Analysis of PDEs</topic><topic>Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brigati, Giovanni</creatorcontrib><creatorcontrib>Dolbeault, Jean</creatorcontrib><creatorcontrib>Simonov, Nikita</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Annales de l'Institut Henri Poincaré. Analyse non linéaire</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brigati, Giovanni</au><au>Dolbeault, Jean</au><au>Simonov, Nikita</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Logarithmic Sobolev and interpolation inequalities on the sphere: Constructive stability results</atitle><jtitle>Annales de l'Institut Henri Poincaré. Analyse non linéaire</jtitle><date>2024-09-01</date><risdate>2024</risdate><volume>41</volume><issue>5</issue><spage>1289</spage><epage>1321</epage><pages>1289-1321</pages><issn>0294-1449</issn><eissn>1873-1430</eissn><abstract>We consider Gagliardo–Nirenberg inequalities on the sphere which interpolate between the Poincaré inequality and the Sobolev inequality, and include the logarithmic Sobolev inequality as a special case. We establish explicit stability results in the subcritical regime using spectral decomposition techniques, and entropy and carré du champ methods applied to nonlinear diffusion flows.</abstract><pub>EMS</pub><doi>10.4171/aihpc/106</doi><tpages>33</tpages><orcidid>https://orcid.org/0000-0003-4234-2298</orcidid><orcidid>https://orcid.org/0000-0002-3241-190X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0294-1449
ispartof Annales de l'Institut Henri Poincaré. Analyse non linéaire, 2024-09, Vol.41 (5), p.1289-1321
issn 0294-1449
1873-1430
language eng
recordid cdi_hal_primary_oai_HAL_hal_03868496v4
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Analysis of PDEs
Mathematics
title Logarithmic Sobolev and interpolation inequalities on the sphere: Constructive stability results
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T02%3A11%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Logarithmic%20Sobolev%20and%20interpolation%20inequalities%20on%20the%20sphere:%20Constructive%20stability%20results&rft.jtitle=Annales%20de%20l'Institut%20Henri%20Poincar%C3%A9.%20Analyse%20non%20lin%C3%A9aire&rft.au=Brigati,%20Giovanni&rft.date=2024-09-01&rft.volume=41&rft.issue=5&rft.spage=1289&rft.epage=1321&rft.pages=1289-1321&rft.issn=0294-1449&rft.eissn=1873-1430&rft_id=info:doi/10.4171/aihpc/106&rft_dat=%3Chal_cross%3Eoai_HAL_hal_03868496v4%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true