Long-time behavior of stochastic Hamilton-Jacobi equations

The long-time behavior of stochastic Hamilton-Jacobi equations is analyzed, including the stochastic mean curvature flow as a special case. In a variety of settings, new and sharpened results are obtained. Among them are (i) a regularization by noise phenomenon for the mean curvature flow with homog...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of functional analysis 2024-02, Vol.286 (4), p.110269, Article 110269
Hauptverfasser: Gassiat, Paul, Gess, Benjamin, Lions, Pierre-Louis, Souganidis, Panagiotis E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 110269
container_title Journal of functional analysis
container_volume 286
creator Gassiat, Paul
Gess, Benjamin
Lions, Pierre-Louis
Souganidis, Panagiotis E.
description The long-time behavior of stochastic Hamilton-Jacobi equations is analyzed, including the stochastic mean curvature flow as a special case. In a variety of settings, new and sharpened results are obtained. Among them are (i) a regularization by noise phenomenon for the mean curvature flow with homogeneous noise which establishes that the inclusion of noise speeds up the decay of solutions, and (ii) the long-time convergence of solutions to spatially inhomogeneous stochastic Hamilton-Jacobi equations. A number of motivating examples about nonlinear stochastic partial differential equations are presented in the appendix.
doi_str_mv 10.1016/j.jfa.2023.110269
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03867158v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_03867158v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c279t-f7c309ea4679686c35145b90f228072324999c3b4e67264360cb6534ff5b8bfb3</originalsourceid><addsrcrecordid>eNo9kMFKAzEURYMoWKsf4G62LjK-l2SSibtStFUG3Og6JCFxMrSNTsaCf29LxdWFy7l3cQi5RagRUN4P9RBtzYDxGhGY1GdkhqAlBdXyczIDYIwi4_KSXJUyACBK0czIQ5d3H3RK21C50Nt9ymOVY1Wm7HtbpuSrtd2mzZR39MX67FIVvr7tlPKuXJOLaDcl3PzlnLw_Pb4t17R7XT0vFx31TOmJRuU56GCFVFq20vMGReM0RMZaUIwzobX23IkgFZOCS_BONlzE2LjWRcfn5O7029uN-RzT1o4_Jttk1ovOHDvgrVTYtHs8sHhi_ZhLGUP8HyCYoygzmIMocxRlTqL4L-RSWnI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Long-time behavior of stochastic Hamilton-Jacobi equations</title><source>Elsevier ScienceDirect Journals</source><creator>Gassiat, Paul ; Gess, Benjamin ; Lions, Pierre-Louis ; Souganidis, Panagiotis E.</creator><creatorcontrib>Gassiat, Paul ; Gess, Benjamin ; Lions, Pierre-Louis ; Souganidis, Panagiotis E.</creatorcontrib><description>The long-time behavior of stochastic Hamilton-Jacobi equations is analyzed, including the stochastic mean curvature flow as a special case. In a variety of settings, new and sharpened results are obtained. Among them are (i) a regularization by noise phenomenon for the mean curvature flow with homogeneous noise which establishes that the inclusion of noise speeds up the decay of solutions, and (ii) the long-time convergence of solutions to spatially inhomogeneous stochastic Hamilton-Jacobi equations. A number of motivating examples about nonlinear stochastic partial differential equations are presented in the appendix.</description><identifier>ISSN: 0022-1236</identifier><identifier>EISSN: 1096-0783</identifier><identifier>DOI: 10.1016/j.jfa.2023.110269</identifier><language>eng</language><publisher>Elsevier</publisher><subject>Mathematics ; Probability</subject><ispartof>Journal of functional analysis, 2024-02, Vol.286 (4), p.110269, Article 110269</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c279t-f7c309ea4679686c35145b90f228072324999c3b4e67264360cb6534ff5b8bfb3</citedby><cites>FETCH-LOGICAL-c279t-f7c309ea4679686c35145b90f228072324999c3b4e67264360cb6534ff5b8bfb3</cites><orcidid>0000-0001-7273-3973</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03867158$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gassiat, Paul</creatorcontrib><creatorcontrib>Gess, Benjamin</creatorcontrib><creatorcontrib>Lions, Pierre-Louis</creatorcontrib><creatorcontrib>Souganidis, Panagiotis E.</creatorcontrib><title>Long-time behavior of stochastic Hamilton-Jacobi equations</title><title>Journal of functional analysis</title><description>The long-time behavior of stochastic Hamilton-Jacobi equations is analyzed, including the stochastic mean curvature flow as a special case. In a variety of settings, new and sharpened results are obtained. Among them are (i) a regularization by noise phenomenon for the mean curvature flow with homogeneous noise which establishes that the inclusion of noise speeds up the decay of solutions, and (ii) the long-time convergence of solutions to spatially inhomogeneous stochastic Hamilton-Jacobi equations. A number of motivating examples about nonlinear stochastic partial differential equations are presented in the appendix.</description><subject>Mathematics</subject><subject>Probability</subject><issn>0022-1236</issn><issn>1096-0783</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kMFKAzEURYMoWKsf4G62LjK-l2SSibtStFUG3Og6JCFxMrSNTsaCf29LxdWFy7l3cQi5RagRUN4P9RBtzYDxGhGY1GdkhqAlBdXyczIDYIwi4_KSXJUyACBK0czIQ5d3H3RK21C50Nt9ymOVY1Wm7HtbpuSrtd2mzZR39MX67FIVvr7tlPKuXJOLaDcl3PzlnLw_Pb4t17R7XT0vFx31TOmJRuU56GCFVFq20vMGReM0RMZaUIwzobX23IkgFZOCS_BONlzE2LjWRcfn5O7029uN-RzT1o4_Jttk1ovOHDvgrVTYtHs8sHhi_ZhLGUP8HyCYoygzmIMocxRlTqL4L-RSWnI</recordid><startdate>20240215</startdate><enddate>20240215</enddate><creator>Gassiat, Paul</creator><creator>Gess, Benjamin</creator><creator>Lions, Pierre-Louis</creator><creator>Souganidis, Panagiotis E.</creator><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-7273-3973</orcidid></search><sort><creationdate>20240215</creationdate><title>Long-time behavior of stochastic Hamilton-Jacobi equations</title><author>Gassiat, Paul ; Gess, Benjamin ; Lions, Pierre-Louis ; Souganidis, Panagiotis E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c279t-f7c309ea4679686c35145b90f228072324999c3b4e67264360cb6534ff5b8bfb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Mathematics</topic><topic>Probability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gassiat, Paul</creatorcontrib><creatorcontrib>Gess, Benjamin</creatorcontrib><creatorcontrib>Lions, Pierre-Louis</creatorcontrib><creatorcontrib>Souganidis, Panagiotis E.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of functional analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gassiat, Paul</au><au>Gess, Benjamin</au><au>Lions, Pierre-Louis</au><au>Souganidis, Panagiotis E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Long-time behavior of stochastic Hamilton-Jacobi equations</atitle><jtitle>Journal of functional analysis</jtitle><date>2024-02-15</date><risdate>2024</risdate><volume>286</volume><issue>4</issue><spage>110269</spage><pages>110269-</pages><artnum>110269</artnum><issn>0022-1236</issn><eissn>1096-0783</eissn><abstract>The long-time behavior of stochastic Hamilton-Jacobi equations is analyzed, including the stochastic mean curvature flow as a special case. In a variety of settings, new and sharpened results are obtained. Among them are (i) a regularization by noise phenomenon for the mean curvature flow with homogeneous noise which establishes that the inclusion of noise speeds up the decay of solutions, and (ii) the long-time convergence of solutions to spatially inhomogeneous stochastic Hamilton-Jacobi equations. A number of motivating examples about nonlinear stochastic partial differential equations are presented in the appendix.</abstract><pub>Elsevier</pub><doi>10.1016/j.jfa.2023.110269</doi><orcidid>https://orcid.org/0000-0001-7273-3973</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-1236
ispartof Journal of functional analysis, 2024-02, Vol.286 (4), p.110269, Article 110269
issn 0022-1236
1096-0783
language eng
recordid cdi_hal_primary_oai_HAL_hal_03867158v1
source Elsevier ScienceDirect Journals
subjects Mathematics
Probability
title Long-time behavior of stochastic Hamilton-Jacobi equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T15%3A52%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Long-time%20behavior%20of%20stochastic%20Hamilton-Jacobi%20equations&rft.jtitle=Journal%20of%20functional%20analysis&rft.au=Gassiat,%20Paul&rft.date=2024-02-15&rft.volume=286&rft.issue=4&rft.spage=110269&rft.pages=110269-&rft.artnum=110269&rft.issn=0022-1236&rft.eissn=1096-0783&rft_id=info:doi/10.1016/j.jfa.2023.110269&rft_dat=%3Chal_cross%3Eoai_HAL_hal_03867158v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true