Long-time behavior of stochastic Hamilton-Jacobi equations
The long-time behavior of stochastic Hamilton-Jacobi equations is analyzed, including the stochastic mean curvature flow as a special case. In a variety of settings, new and sharpened results are obtained. Among them are (i) a regularization by noise phenomenon for the mean curvature flow with homog...
Gespeichert in:
Veröffentlicht in: | Journal of functional analysis 2024-02, Vol.286 (4), p.110269, Article 110269 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The long-time behavior of stochastic Hamilton-Jacobi equations is analyzed, including the stochastic mean curvature flow as a special case. In a variety of settings, new and sharpened results are obtained. Among them are (i) a regularization by noise phenomenon for the mean curvature flow with homogeneous noise which establishes that the inclusion of noise speeds up the decay of solutions, and (ii) the long-time convergence of solutions to spatially inhomogeneous stochastic Hamilton-Jacobi equations. A number of motivating examples about nonlinear stochastic partial differential equations are presented in the appendix. |
---|---|
ISSN: | 0022-1236 1096-0783 |
DOI: | 10.1016/j.jfa.2023.110269 |