Scaling of far-field wake angle of nonaxisymmetric pressure disturbance

It has been recently emphasized that the angle of maximum wave amplitude α in the wake of a disturbance of finite size can be significantly narrower than the maximum value α_{K}=sin^{-1}(1/3)≃19.47^{∘} predicted by the classical analysis of Kelvin. For axisymmetric disturbance, a simple argument bas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2014-06, Vol.89 (6), p.063004-063004, Article 063004
Hauptverfasser: Moisy, F, Rabaud, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 063004
container_issue 6
container_start_page 063004
container_title Physical review. E, Statistical, nonlinear, and soft matter physics
container_volume 89
creator Moisy, F
Rabaud, M
description It has been recently emphasized that the angle of maximum wave amplitude α in the wake of a disturbance of finite size can be significantly narrower than the maximum value α_{K}=sin^{-1}(1/3)≃19.47^{∘} predicted by the classical analysis of Kelvin. For axisymmetric disturbance, a simple argument based on the Cauchy-Poisson initial-value problem suggests that the wake angle decreases following a Mach-like law at large velocity, α≃Fr_{L}^{-1}, where Fr_{L}=U/sqrt[gL] is the Froude number based on the disturbance velocity U, its size L, and gravity g. In this paper we extend this analysis to the case of nonaxisymmetric disturbances, relevant to real ships. We find that, for intermediate Froude numbers, the wake angle follows an intermediate scaling law α≃Fr_{L}^{-2}, in agreement with the recent prediction of Noblesse et al. [Eur. J. Mech. B/Fluids 46, 164 (2014)]. We show that beyond a critical Froude number, which scales as A^{1/2} (where A is the length-to-width aspect ratio of the disturbance), the asymptotic scaling α≃Fr_{B}^{-1} holds, where now Fr_{B}=A^{1/2}Fr_{L} is the Froude number based on the disturbance width. We propose a simple model for this transition, and provide a regime diagram of the scaling of the wake angle as a function of parameters (A,Fr_{L}).
doi_str_mv 10.1103/PhysRevE.89.063004
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03865426v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1555620233</sourcerecordid><originalsourceid>FETCH-LOGICAL-c430t-f59337471390a79131a13773b324931d5a74a36fc5da3a9a9a4d7a1acb761edf3</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EoqXwAyxQlrBIsTOxHS-rqrRIlUA81tYkcdpAHsVOCv17EvWhWczo6sxdHEJuGR0zRuHxdb1zb2Y7G0dqTAVQGp6RIeOc-gFIcd7foHyQnA_IlXNflEIAUXhJBgGnTEVSDMn8PcEir1ZenXkZWj_LTZF6v_htPKxWhenzqq7wL3e7sjSNzRNvY41zrTVemrumtTFWibkmFxkWztwc9oh8Ps0-pgt_-TJ_nk6WfhICbfyMKwAZSgaKolQMGDKQEmIIQgUs5ShDBJElPEVA1U2YSmSYxFIwk2YwIg_73jUWemPzEu1O15jrxWSp-4xCJHgYiC3r2Ps9u7H1T2tco8vcJaYosDJ163SniouABgAdGuzRxNbOWZOduhnVvWx9lK0jpfeyu6e7Q38blyY9vRztwj861XsY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1555620233</pqid></control><display><type>article</type><title>Scaling of far-field wake angle of nonaxisymmetric pressure disturbance</title><source>MEDLINE</source><source>American Physical Society Journals</source><creator>Moisy, F ; Rabaud, M</creator><creatorcontrib>Moisy, F ; Rabaud, M</creatorcontrib><description>It has been recently emphasized that the angle of maximum wave amplitude α in the wake of a disturbance of finite size can be significantly narrower than the maximum value α_{K}=sin^{-1}(1/3)≃19.47^{∘} predicted by the classical analysis of Kelvin. For axisymmetric disturbance, a simple argument based on the Cauchy-Poisson initial-value problem suggests that the wake angle decreases following a Mach-like law at large velocity, α≃Fr_{L}^{-1}, where Fr_{L}=U/sqrt[gL] is the Froude number based on the disturbance velocity U, its size L, and gravity g. In this paper we extend this analysis to the case of nonaxisymmetric disturbances, relevant to real ships. We find that, for intermediate Froude numbers, the wake angle follows an intermediate scaling law α≃Fr_{L}^{-2}, in agreement with the recent prediction of Noblesse et al. [Eur. J. Mech. B/Fluids 46, 164 (2014)]. We show that beyond a critical Froude number, which scales as A^{1/2} (where A is the length-to-width aspect ratio of the disturbance), the asymptotic scaling α≃Fr_{B}^{-1} holds, where now Fr_{B}=A^{1/2}Fr_{L} is the Froude number based on the disturbance width. We propose a simple model for this transition, and provide a regime diagram of the scaling of the wake angle as a function of parameters (A,Fr_{L}).</description><identifier>ISSN: 1539-3755</identifier><identifier>EISSN: 1550-2376</identifier><identifier>DOI: 10.1103/PhysRevE.89.063004</identifier><identifier>PMID: 25019876</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>Computer Simulation ; Fluid mechanics ; Fourier Analysis ; Mechanics ; Models, Theoretical ; Motion ; Physics ; Pressure ; Ships</subject><ispartof>Physical review. E, Statistical, nonlinear, and soft matter physics, 2014-06, Vol.89 (6), p.063004-063004, Article 063004</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c430t-f59337471390a79131a13773b324931d5a74a36fc5da3a9a9a4d7a1acb761edf3</citedby><cites>FETCH-LOGICAL-c430t-f59337471390a79131a13773b324931d5a74a36fc5da3a9a9a4d7a1acb761edf3</cites><orcidid>0000-0003-1527-4744 ; 0000-0003-0408-4232</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25019876$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03865426$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Moisy, F</creatorcontrib><creatorcontrib>Rabaud, M</creatorcontrib><title>Scaling of far-field wake angle of nonaxisymmetric pressure disturbance</title><title>Physical review. E, Statistical, nonlinear, and soft matter physics</title><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><description>It has been recently emphasized that the angle of maximum wave amplitude α in the wake of a disturbance of finite size can be significantly narrower than the maximum value α_{K}=sin^{-1}(1/3)≃19.47^{∘} predicted by the classical analysis of Kelvin. For axisymmetric disturbance, a simple argument based on the Cauchy-Poisson initial-value problem suggests that the wake angle decreases following a Mach-like law at large velocity, α≃Fr_{L}^{-1}, where Fr_{L}=U/sqrt[gL] is the Froude number based on the disturbance velocity U, its size L, and gravity g. In this paper we extend this analysis to the case of nonaxisymmetric disturbances, relevant to real ships. We find that, for intermediate Froude numbers, the wake angle follows an intermediate scaling law α≃Fr_{L}^{-2}, in agreement with the recent prediction of Noblesse et al. [Eur. J. Mech. B/Fluids 46, 164 (2014)]. We show that beyond a critical Froude number, which scales as A^{1/2} (where A is the length-to-width aspect ratio of the disturbance), the asymptotic scaling α≃Fr_{B}^{-1} holds, where now Fr_{B}=A^{1/2}Fr_{L} is the Froude number based on the disturbance width. We propose a simple model for this transition, and provide a regime diagram of the scaling of the wake angle as a function of parameters (A,Fr_{L}).</description><subject>Computer Simulation</subject><subject>Fluid mechanics</subject><subject>Fourier Analysis</subject><subject>Mechanics</subject><subject>Models, Theoretical</subject><subject>Motion</subject><subject>Physics</subject><subject>Pressure</subject><subject>Ships</subject><issn>1539-3755</issn><issn>1550-2376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kMtOwzAQRS0EoqXwAyxQlrBIsTOxHS-rqrRIlUA81tYkcdpAHsVOCv17EvWhWczo6sxdHEJuGR0zRuHxdb1zb2Y7G0dqTAVQGp6RIeOc-gFIcd7foHyQnA_IlXNflEIAUXhJBgGnTEVSDMn8PcEir1ZenXkZWj_LTZF6v_htPKxWhenzqq7wL3e7sjSNzRNvY41zrTVemrumtTFWibkmFxkWztwc9oh8Ps0-pgt_-TJ_nk6WfhICbfyMKwAZSgaKolQMGDKQEmIIQgUs5ShDBJElPEVA1U2YSmSYxFIwk2YwIg_73jUWemPzEu1O15jrxWSp-4xCJHgYiC3r2Ps9u7H1T2tco8vcJaYosDJ163SniouABgAdGuzRxNbOWZOduhnVvWx9lK0jpfeyu6e7Q38blyY9vRztwj861XsY</recordid><startdate>201406</startdate><enddate>201406</enddate><creator>Moisy, F</creator><creator>Rabaud, M</creator><general>American Physical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-1527-4744</orcidid><orcidid>https://orcid.org/0000-0003-0408-4232</orcidid></search><sort><creationdate>201406</creationdate><title>Scaling of far-field wake angle of nonaxisymmetric pressure disturbance</title><author>Moisy, F ; Rabaud, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c430t-f59337471390a79131a13773b324931d5a74a36fc5da3a9a9a4d7a1acb761edf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Computer Simulation</topic><topic>Fluid mechanics</topic><topic>Fourier Analysis</topic><topic>Mechanics</topic><topic>Models, Theoretical</topic><topic>Motion</topic><topic>Physics</topic><topic>Pressure</topic><topic>Ships</topic><toplevel>online_resources</toplevel><creatorcontrib>Moisy, F</creatorcontrib><creatorcontrib>Rabaud, M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moisy, F</au><au>Rabaud, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scaling of far-field wake angle of nonaxisymmetric pressure disturbance</atitle><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><date>2014-06</date><risdate>2014</risdate><volume>89</volume><issue>6</issue><spage>063004</spage><epage>063004</epage><pages>063004-063004</pages><artnum>063004</artnum><issn>1539-3755</issn><eissn>1550-2376</eissn><abstract>It has been recently emphasized that the angle of maximum wave amplitude α in the wake of a disturbance of finite size can be significantly narrower than the maximum value α_{K}=sin^{-1}(1/3)≃19.47^{∘} predicted by the classical analysis of Kelvin. For axisymmetric disturbance, a simple argument based on the Cauchy-Poisson initial-value problem suggests that the wake angle decreases following a Mach-like law at large velocity, α≃Fr_{L}^{-1}, where Fr_{L}=U/sqrt[gL] is the Froude number based on the disturbance velocity U, its size L, and gravity g. In this paper we extend this analysis to the case of nonaxisymmetric disturbances, relevant to real ships. We find that, for intermediate Froude numbers, the wake angle follows an intermediate scaling law α≃Fr_{L}^{-2}, in agreement with the recent prediction of Noblesse et al. [Eur. J. Mech. B/Fluids 46, 164 (2014)]. We show that beyond a critical Froude number, which scales as A^{1/2} (where A is the length-to-width aspect ratio of the disturbance), the asymptotic scaling α≃Fr_{B}^{-1} holds, where now Fr_{B}=A^{1/2}Fr_{L} is the Froude number based on the disturbance width. We propose a simple model for this transition, and provide a regime diagram of the scaling of the wake angle as a function of parameters (A,Fr_{L}).</abstract><cop>United States</cop><pub>American Physical Society</pub><pmid>25019876</pmid><doi>10.1103/PhysRevE.89.063004</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-1527-4744</orcidid><orcidid>https://orcid.org/0000-0003-0408-4232</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1539-3755
ispartof Physical review. E, Statistical, nonlinear, and soft matter physics, 2014-06, Vol.89 (6), p.063004-063004, Article 063004
issn 1539-3755
1550-2376
language eng
recordid cdi_hal_primary_oai_HAL_hal_03865426v1
source MEDLINE; American Physical Society Journals
subjects Computer Simulation
Fluid mechanics
Fourier Analysis
Mechanics
Models, Theoretical
Motion
Physics
Pressure
Ships
title Scaling of far-field wake angle of nonaxisymmetric pressure disturbance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A01%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scaling%20of%20far-field%20wake%20angle%20of%20nonaxisymmetric%20pressure%20disturbance&rft.jtitle=Physical%20review.%20E,%20Statistical,%20nonlinear,%20and%20soft%20matter%20physics&rft.au=Moisy,%20F&rft.date=2014-06&rft.volume=89&rft.issue=6&rft.spage=063004&rft.epage=063004&rft.pages=063004-063004&rft.artnum=063004&rft.issn=1539-3755&rft.eissn=1550-2376&rft_id=info:doi/10.1103/PhysRevE.89.063004&rft_dat=%3Cproquest_hal_p%3E1555620233%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1555620233&rft_id=info:pmid/25019876&rfr_iscdi=true