Three-Stage Character of Strain Hardening of α-Ti in Tension Conditions

The plasticity of hexagonal materials is strongly anisotropic and involves different microscopic mechanisms such as mechanical twinning and dislocation glide. Twins are often considered to be responsible for a particular three-stage shape of compression curves, unusual for polycrystals with cubic st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science forum 2014-05, Vol.783-786, p.568-573
Hauptverfasser: Amouzou, K.E.K., Lecomte, J.S., Richeton, T., Lebyodkin, M.A., Roth, A., Lebedkina, T.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 573
container_issue
container_start_page 568
container_title Materials science forum
container_volume 783-786
creator Amouzou, K.E.K.
Lecomte, J.S.
Richeton, T.
Lebyodkin, M.A.
Roth, A.
Lebedkina, T.A.
description The plasticity of hexagonal materials is strongly anisotropic and involves different microscopic mechanisms such as mechanical twinning and dislocation glide. Twins are often considered to be responsible for a particular three-stage shape of compression curves, unusual for polycrystals with cubic structure. However, the role of twins remains a matter of debate and it is not clear if the same features appear in other testing conditions. We performed tensile tests on commercially-pure Ti samples cut along the rolling and the transverse direction, which yielded several unexpected results. In particular, the work hardening rate was found to be lower in the latter case, although the EBSD measurements revealed for them a larger volume fraction of twins. Also, the two kinds of specimens showed an opposite sign for the strain-rate effect on the proneness to the three-stage shape of the deformation curves. As a first approach, these observations are compared to the results derived from a simple Kocks-Mecking model. The possible role of twinning and dislocation glide on the anisotropy of mechanical behavior of titanium is then discussed.
doi_str_mv 10.4028/www.scientific.net/MSF.783-786.568
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03864443v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1651428756</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4528-d40b1c07605dd733fabd946bb406bf6931c0e6609c4af38470e912735da75cfc3</originalsourceid><addsrcrecordid>eNqVkE1OwzAQRi0EEqVwhywBKakd_2ZZCiVIRSxa1pbjOI2r1il2SsWxuAhnwlURrFmMZvTNp7d4ANwimBGYi9F-v8-Ctsb1trE6c6YfPc-nGRc45YJllIkTMECM5WnBaX4KBjCnNKWEs3NwEcIKQowEYgNQLlpvTDrv1dIkk1Z5pXvjk65J5r1X1iWl8rVx1i0P2ddnurBJTBfGBdu5ZNK52vbxCpfgrFHrYK5-9hC8Th8WkzKdvTw-TcazVBOai7QmsEIacgZpXXOMG1XVBWFVRSCrGlbg-DSMwUIT1WBBODQFyjmmteJUNxoPwc2R26q13Hq7Uf5DdsrKcjyThwxiwQgh-B3F7vWxu_Xd286EXm5s0Ga9Vs50uyARo4jkglMWq3fHqvZdCN40v2wE5UG5jMrln3IZlcuoXEblcZiMyiPk_giJ6lzojW7lqtt5F338B_MNcpyTgQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1651428756</pqid></control><display><type>article</type><title>Three-Stage Character of Strain Hardening of α-Ti in Tension Conditions</title><source>Scientific.net Journals</source><creator>Amouzou, K.E.K. ; Lecomte, J.S. ; Richeton, T. ; Lebyodkin, M.A. ; Roth, A. ; Lebedkina, T.A.</creator><creatorcontrib>Amouzou, K.E.K. ; Lecomte, J.S. ; Richeton, T. ; Lebyodkin, M.A. ; Roth, A. ; Lebedkina, T.A.</creatorcontrib><description>The plasticity of hexagonal materials is strongly anisotropic and involves different microscopic mechanisms such as mechanical twinning and dislocation glide. Twins are often considered to be responsible for a particular three-stage shape of compression curves, unusual for polycrystals with cubic structure. However, the role of twins remains a matter of debate and it is not clear if the same features appear in other testing conditions. We performed tensile tests on commercially-pure Ti samples cut along the rolling and the transverse direction, which yielded several unexpected results. In particular, the work hardening rate was found to be lower in the latter case, although the EBSD measurements revealed for them a larger volume fraction of twins. Also, the two kinds of specimens showed an opposite sign for the strain-rate effect on the proneness to the three-stage shape of the deformation curves. As a first approach, these observations are compared to the results derived from a simple Kocks-Mecking model. The possible role of twinning and dislocation glide on the anisotropy of mechanical behavior of titanium is then discussed.</description><identifier>ISSN: 0255-5476</identifier><identifier>ISSN: 1662-9752</identifier><identifier>EISSN: 1662-9752</identifier><identifier>EISSN: 1662-9760</identifier><identifier>DOI: 10.4028/www.scientific.net/MSF.783-786.568</identifier><language>eng</language><publisher>Trans Tech Publications Ltd</publisher><subject>Anisotropy ; Dislocations ; Engineering Sciences ; Glide ; Materials ; Materials science ; Strain hardening ; Tensile tests ; Titanium ; Twinning</subject><ispartof>Materials science forum, 2014-05, Vol.783-786, p.568-573</ispartof><rights>2014 Trans Tech Publications Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4528-d40b1c07605dd733fabd946bb406bf6931c0e6609c4af38470e912735da75cfc3</citedby><cites>FETCH-LOGICAL-c4528-d40b1c07605dd733fabd946bb406bf6931c0e6609c4af38470e912735da75cfc3</cites><orcidid>0000-0001-5289-8893</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/3129?width=600</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://cnrs.hal.science/hal-03864443$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Amouzou, K.E.K.</creatorcontrib><creatorcontrib>Lecomte, J.S.</creatorcontrib><creatorcontrib>Richeton, T.</creatorcontrib><creatorcontrib>Lebyodkin, M.A.</creatorcontrib><creatorcontrib>Roth, A.</creatorcontrib><creatorcontrib>Lebedkina, T.A.</creatorcontrib><title>Three-Stage Character of Strain Hardening of α-Ti in Tension Conditions</title><title>Materials science forum</title><description>The plasticity of hexagonal materials is strongly anisotropic and involves different microscopic mechanisms such as mechanical twinning and dislocation glide. Twins are often considered to be responsible for a particular three-stage shape of compression curves, unusual for polycrystals with cubic structure. However, the role of twins remains a matter of debate and it is not clear if the same features appear in other testing conditions. We performed tensile tests on commercially-pure Ti samples cut along the rolling and the transverse direction, which yielded several unexpected results. In particular, the work hardening rate was found to be lower in the latter case, although the EBSD measurements revealed for them a larger volume fraction of twins. Also, the two kinds of specimens showed an opposite sign for the strain-rate effect on the proneness to the three-stage shape of the deformation curves. As a first approach, these observations are compared to the results derived from a simple Kocks-Mecking model. The possible role of twinning and dislocation glide on the anisotropy of mechanical behavior of titanium is then discussed.</description><subject>Anisotropy</subject><subject>Dislocations</subject><subject>Engineering Sciences</subject><subject>Glide</subject><subject>Materials</subject><subject>Materials science</subject><subject>Strain hardening</subject><subject>Tensile tests</subject><subject>Titanium</subject><subject>Twinning</subject><issn>0255-5476</issn><issn>1662-9752</issn><issn>1662-9752</issn><issn>1662-9760</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqVkE1OwzAQRi0EEqVwhywBKakd_2ZZCiVIRSxa1pbjOI2r1il2SsWxuAhnwlURrFmMZvTNp7d4ANwimBGYi9F-v8-Ctsb1trE6c6YfPc-nGRc45YJllIkTMECM5WnBaX4KBjCnNKWEs3NwEcIKQowEYgNQLlpvTDrv1dIkk1Z5pXvjk65J5r1X1iWl8rVx1i0P2ddnurBJTBfGBdu5ZNK52vbxCpfgrFHrYK5-9hC8Th8WkzKdvTw-TcazVBOai7QmsEIacgZpXXOMG1XVBWFVRSCrGlbg-DSMwUIT1WBBODQFyjmmteJUNxoPwc2R26q13Hq7Uf5DdsrKcjyThwxiwQgh-B3F7vWxu_Xd286EXm5s0Ga9Vs50uyARo4jkglMWq3fHqvZdCN40v2wE5UG5jMrln3IZlcuoXEblcZiMyiPk_giJ6lzojW7lqtt5F338B_MNcpyTgQ</recordid><startdate>20140523</startdate><enddate>20140523</enddate><creator>Amouzou, K.E.K.</creator><creator>Lecomte, J.S.</creator><creator>Richeton, T.</creator><creator>Lebyodkin, M.A.</creator><creator>Roth, A.</creator><creator>Lebedkina, T.A.</creator><general>Trans Tech Publications Ltd</general><general>Trans Tech Publications Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-5289-8893</orcidid></search><sort><creationdate>20140523</creationdate><title>Three-Stage Character of Strain Hardening of α-Ti in Tension Conditions</title><author>Amouzou, K.E.K. ; Lecomte, J.S. ; Richeton, T. ; Lebyodkin, M.A. ; Roth, A. ; Lebedkina, T.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4528-d40b1c07605dd733fabd946bb406bf6931c0e6609c4af38470e912735da75cfc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Anisotropy</topic><topic>Dislocations</topic><topic>Engineering Sciences</topic><topic>Glide</topic><topic>Materials</topic><topic>Materials science</topic><topic>Strain hardening</topic><topic>Tensile tests</topic><topic>Titanium</topic><topic>Twinning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amouzou, K.E.K.</creatorcontrib><creatorcontrib>Lecomte, J.S.</creatorcontrib><creatorcontrib>Richeton, T.</creatorcontrib><creatorcontrib>Lebyodkin, M.A.</creatorcontrib><creatorcontrib>Roth, A.</creatorcontrib><creatorcontrib>Lebedkina, T.A.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Materials science forum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amouzou, K.E.K.</au><au>Lecomte, J.S.</au><au>Richeton, T.</au><au>Lebyodkin, M.A.</au><au>Roth, A.</au><au>Lebedkina, T.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-Stage Character of Strain Hardening of α-Ti in Tension Conditions</atitle><jtitle>Materials science forum</jtitle><date>2014-05-23</date><risdate>2014</risdate><volume>783-786</volume><spage>568</spage><epage>573</epage><pages>568-573</pages><issn>0255-5476</issn><issn>1662-9752</issn><eissn>1662-9752</eissn><eissn>1662-9760</eissn><abstract>The plasticity of hexagonal materials is strongly anisotropic and involves different microscopic mechanisms such as mechanical twinning and dislocation glide. Twins are often considered to be responsible for a particular three-stage shape of compression curves, unusual for polycrystals with cubic structure. However, the role of twins remains a matter of debate and it is not clear if the same features appear in other testing conditions. We performed tensile tests on commercially-pure Ti samples cut along the rolling and the transverse direction, which yielded several unexpected results. In particular, the work hardening rate was found to be lower in the latter case, although the EBSD measurements revealed for them a larger volume fraction of twins. Also, the two kinds of specimens showed an opposite sign for the strain-rate effect on the proneness to the three-stage shape of the deformation curves. As a first approach, these observations are compared to the results derived from a simple Kocks-Mecking model. The possible role of twinning and dislocation glide on the anisotropy of mechanical behavior of titanium is then discussed.</abstract><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/MSF.783-786.568</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-5289-8893</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0255-5476
ispartof Materials science forum, 2014-05, Vol.783-786, p.568-573
issn 0255-5476
1662-9752
1662-9752
1662-9760
language eng
recordid cdi_hal_primary_oai_HAL_hal_03864443v1
source Scientific.net Journals
subjects Anisotropy
Dislocations
Engineering Sciences
Glide
Materials
Materials science
Strain hardening
Tensile tests
Titanium
Twinning
title Three-Stage Character of Strain Hardening of α-Ti in Tension Conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T09%3A45%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-Stage%20Character%20of%20Strain%20Hardening%20of%20%CE%B1-Ti%20in%20Tension%20Conditions&rft.jtitle=Materials%20science%20forum&rft.au=Amouzou,%20K.E.K.&rft.date=2014-05-23&rft.volume=783-786&rft.spage=568&rft.epage=573&rft.pages=568-573&rft.issn=0255-5476&rft.eissn=1662-9752&rft_id=info:doi/10.4028/www.scientific.net/MSF.783-786.568&rft_dat=%3Cproquest_hal_p%3E1651428756%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1651428756&rft_id=info:pmid/&rfr_iscdi=true