Experimental Characterisation and Numerical Modelling of the Effect of Cold Rolling on the Nanoindentation Response of Pure Zinc Grains

In this study, the orientation-dependent response of as-received annealed cold-rolled pure zinc and material with thickness reduction rate of 50% grains using instrumented indentation tests is investigated. The experiments were characterized by orientation microscopy and atomic force microscopy scan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IOP conference series. Materials Science and Engineering 2019-05, Vol.540 (1), p.12011
Hauptverfasser: Nguyen, P T N, Abbès, F, Abbès, B, Lecomte, J-S, Schuman, C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 12011
container_title IOP conference series. Materials Science and Engineering
container_volume 540
creator Nguyen, P T N
Abbès, F
Abbès, B
Lecomte, J-S
Schuman, C
description In this study, the orientation-dependent response of as-received annealed cold-rolled pure zinc and material with thickness reduction rate of 50% grains using instrumented indentation tests is investigated. The experiments were characterized by orientation microscopy and atomic force microscopy scans to quantify the orientation-dependent mechanical response during nanoindentation. The single crystal hardening parameters are then identified for each family of slip system by using crystal plasticity finite element (CPFE) simulations. Comparison between experimental and numerical results in terms of "load-penetration depth" curves show a good agreement. The increased percentage of cold reduction increases the identified critical resolved shear stress (CRSS). Finally, the accuracy of the model is evaluated by comparing experimental and numerical data issued from nanoindentation response grains of distinct crystalline orientations involving different slip systems activity rates.
doi_str_mv 10.1088/1757-899X/540/1/012011
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03863926v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2561086862</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-e0e05c0efaa949b987d4153b75f541857276256df7e196337d45f1604d1558843</originalsourceid><addsrcrecordid>eNqFkd9KwzAUxosoqNNXkIA3ejGX0yZpejnG3IRtin9AvAmxTVylS2rSiT6Br21qZSIIXiU53-98Sc4XRUeAzwBzPoCUpn2eZfcDSvAABhhiDLAV7W2E7c2ew2607_0zxiwlBO9FH-O3WrlypUwjKzRaSifzJhS8bEprkDQFWqxXoZAHeW4LVVWleUJWo2ap0FhrlTftaWSrAl3bb9V8qQtpbGmK1vrL7Fr52hqvWv5q7RR6KE2OJk6Wxh9EO1pWXh1-r73o7nx8O5r2Z5eTi9Fw1s8JgaavsMI0x0pLmZHsMeNpQYAmjynVlACnaZyymLJCpwoyliRBphoYJgVQyjlJetFp57uUlajDx6V7F1aWYjqcibaGE86SLGavENjjjq2dfVkr34hnu3YmPE-EO8LsGWdxoFhH5c5675Te2AIWbUCinb1ocxAhIAGiCyg0nnSNpa1_nOc341-YqAsd0PgP9B__T5n4nwQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2561086862</pqid></control><display><type>article</type><title>Experimental Characterisation and Numerical Modelling of the Effect of Cold Rolling on the Nanoindentation Response of Pure Zinc Grains</title><source>Institute of Physics Open Access Journal Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IOPscience extra</source><source>Free Full-Text Journals in Chemistry</source><creator>Nguyen, P T N ; Abbès, F ; Abbès, B ; Lecomte, J-S ; Schuman, C</creator><creatorcontrib>Nguyen, P T N ; Abbès, F ; Abbès, B ; Lecomte, J-S ; Schuman, C</creatorcontrib><description>In this study, the orientation-dependent response of as-received annealed cold-rolled pure zinc and material with thickness reduction rate of 50% grains using instrumented indentation tests is investigated. The experiments were characterized by orientation microscopy and atomic force microscopy scans to quantify the orientation-dependent mechanical response during nanoindentation. The single crystal hardening parameters are then identified for each family of slip system by using crystal plasticity finite element (CPFE) simulations. Comparison between experimental and numerical results in terms of "load-penetration depth" curves show a good agreement. The increased percentage of cold reduction increases the identified critical resolved shear stress (CRSS). Finally, the accuracy of the model is evaluated by comparing experimental and numerical data issued from nanoindentation response grains of distinct crystalline orientations involving different slip systems activity rates.</description><identifier>ISSN: 1757-8981</identifier><identifier>EISSN: 1757-899X</identifier><identifier>DOI: 10.1088/1757-899X/540/1/012011</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Atomic force microscopy ; Cold rolling ; Cold working ; Crystal structure ; Engineering Sciences ; Grains ; Hardness tests ; Materials ; Mathematical models ; Mechanical analysis ; Microscopy ; Model accuracy ; Nanoindentation ; Orientation ; Parameter identification ; Penetration depth ; Shear stress ; Single crystals ; Slip ; Zinc</subject><ispartof>IOP conference series. Materials Science and Engineering, 2019-05, Vol.540 (1), p.12011</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-e0e05c0efaa949b987d4153b75f541857276256df7e196337d45f1604d1558843</citedby><cites>FETCH-LOGICAL-c441t-e0e05c0efaa949b987d4153b75f541857276256df7e196337d45f1604d1558843</cites><orcidid>0000-0001-5289-8893</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1757-899X/540/1/012011/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>230,315,781,785,886,27929,27930,38873,38895,53845,53872</link.rule.ids><backlink>$$Uhttps://cnrs.hal.science/hal-03863926$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Nguyen, P T N</creatorcontrib><creatorcontrib>Abbès, F</creatorcontrib><creatorcontrib>Abbès, B</creatorcontrib><creatorcontrib>Lecomte, J-S</creatorcontrib><creatorcontrib>Schuman, C</creatorcontrib><title>Experimental Characterisation and Numerical Modelling of the Effect of Cold Rolling on the Nanoindentation Response of Pure Zinc Grains</title><title>IOP conference series. Materials Science and Engineering</title><addtitle>IOP Conf. Ser.: Mater. Sci. Eng</addtitle><description>In this study, the orientation-dependent response of as-received annealed cold-rolled pure zinc and material with thickness reduction rate of 50% grains using instrumented indentation tests is investigated. The experiments were characterized by orientation microscopy and atomic force microscopy scans to quantify the orientation-dependent mechanical response during nanoindentation. The single crystal hardening parameters are then identified for each family of slip system by using crystal plasticity finite element (CPFE) simulations. Comparison between experimental and numerical results in terms of "load-penetration depth" curves show a good agreement. The increased percentage of cold reduction increases the identified critical resolved shear stress (CRSS). Finally, the accuracy of the model is evaluated by comparing experimental and numerical data issued from nanoindentation response grains of distinct crystalline orientations involving different slip systems activity rates.</description><subject>Atomic force microscopy</subject><subject>Cold rolling</subject><subject>Cold working</subject><subject>Crystal structure</subject><subject>Engineering Sciences</subject><subject>Grains</subject><subject>Hardness tests</subject><subject>Materials</subject><subject>Mathematical models</subject><subject>Mechanical analysis</subject><subject>Microscopy</subject><subject>Model accuracy</subject><subject>Nanoindentation</subject><subject>Orientation</subject><subject>Parameter identification</subject><subject>Penetration depth</subject><subject>Shear stress</subject><subject>Single crystals</subject><subject>Slip</subject><subject>Zinc</subject><issn>1757-8981</issn><issn>1757-899X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkd9KwzAUxosoqNNXkIA3ejGX0yZpejnG3IRtin9AvAmxTVylS2rSiT6Br21qZSIIXiU53-98Sc4XRUeAzwBzPoCUpn2eZfcDSvAABhhiDLAV7W2E7c2ew2607_0zxiwlBO9FH-O3WrlypUwjKzRaSifzJhS8bEprkDQFWqxXoZAHeW4LVVWleUJWo2ap0FhrlTftaWSrAl3bb9V8qQtpbGmK1vrL7Fr52hqvWv5q7RR6KE2OJk6Wxh9EO1pWXh1-r73o7nx8O5r2Z5eTi9Fw1s8JgaavsMI0x0pLmZHsMeNpQYAmjynVlACnaZyymLJCpwoyliRBphoYJgVQyjlJetFp57uUlajDx6V7F1aWYjqcibaGE86SLGavENjjjq2dfVkr34hnu3YmPE-EO8LsGWdxoFhH5c5675Te2AIWbUCinb1ocxAhIAGiCyg0nnSNpa1_nOc341-YqAsd0PgP9B__T5n4nwQ</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Nguyen, P T N</creator><creator>Abbès, F</creator><creator>Abbès, B</creator><creator>Lecomte, J-S</creator><creator>Schuman, C</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-5289-8893</orcidid></search><sort><creationdate>20190501</creationdate><title>Experimental Characterisation and Numerical Modelling of the Effect of Cold Rolling on the Nanoindentation Response of Pure Zinc Grains</title><author>Nguyen, P T N ; Abbès, F ; Abbès, B ; Lecomte, J-S ; Schuman, C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-e0e05c0efaa949b987d4153b75f541857276256df7e196337d45f1604d1558843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Atomic force microscopy</topic><topic>Cold rolling</topic><topic>Cold working</topic><topic>Crystal structure</topic><topic>Engineering Sciences</topic><topic>Grains</topic><topic>Hardness tests</topic><topic>Materials</topic><topic>Mathematical models</topic><topic>Mechanical analysis</topic><topic>Microscopy</topic><topic>Model accuracy</topic><topic>Nanoindentation</topic><topic>Orientation</topic><topic>Parameter identification</topic><topic>Penetration depth</topic><topic>Shear stress</topic><topic>Single crystals</topic><topic>Slip</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, P T N</creatorcontrib><creatorcontrib>Abbès, F</creatorcontrib><creatorcontrib>Abbès, B</creatorcontrib><creatorcontrib>Lecomte, J-S</creatorcontrib><creatorcontrib>Schuman, C</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IOP conference series. Materials Science and Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, P T N</au><au>Abbès, F</au><au>Abbès, B</au><au>Lecomte, J-S</au><au>Schuman, C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental Characterisation and Numerical Modelling of the Effect of Cold Rolling on the Nanoindentation Response of Pure Zinc Grains</atitle><jtitle>IOP conference series. Materials Science and Engineering</jtitle><addtitle>IOP Conf. Ser.: Mater. Sci. Eng</addtitle><date>2019-05-01</date><risdate>2019</risdate><volume>540</volume><issue>1</issue><spage>12011</spage><pages>12011-</pages><issn>1757-8981</issn><eissn>1757-899X</eissn><abstract>In this study, the orientation-dependent response of as-received annealed cold-rolled pure zinc and material with thickness reduction rate of 50% grains using instrumented indentation tests is investigated. The experiments were characterized by orientation microscopy and atomic force microscopy scans to quantify the orientation-dependent mechanical response during nanoindentation. The single crystal hardening parameters are then identified for each family of slip system by using crystal plasticity finite element (CPFE) simulations. Comparison between experimental and numerical results in terms of "load-penetration depth" curves show a good agreement. The increased percentage of cold reduction increases the identified critical resolved shear stress (CRSS). Finally, the accuracy of the model is evaluated by comparing experimental and numerical data issued from nanoindentation response grains of distinct crystalline orientations involving different slip systems activity rates.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1757-899X/540/1/012011</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-5289-8893</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1757-8981
ispartof IOP conference series. Materials Science and Engineering, 2019-05, Vol.540 (1), p.12011
issn 1757-8981
1757-899X
language eng
recordid cdi_hal_primary_oai_HAL_hal_03863926v1
source Institute of Physics Open Access Journal Titles; EZB-FREE-00999 freely available EZB journals; IOPscience extra; Free Full-Text Journals in Chemistry
subjects Atomic force microscopy
Cold rolling
Cold working
Crystal structure
Engineering Sciences
Grains
Hardness tests
Materials
Mathematical models
Mechanical analysis
Microscopy
Model accuracy
Nanoindentation
Orientation
Parameter identification
Penetration depth
Shear stress
Single crystals
Slip
Zinc
title Experimental Characterisation and Numerical Modelling of the Effect of Cold Rolling on the Nanoindentation Response of Pure Zinc Grains
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T19%3A44%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20Characterisation%20and%20Numerical%20Modelling%20of%20the%20Effect%20of%20Cold%20Rolling%20on%20the%20Nanoindentation%20Response%20of%20Pure%20Zinc%20Grains&rft.jtitle=IOP%20conference%20series.%20Materials%20Science%20and%20Engineering&rft.au=Nguyen,%20P%20T%20N&rft.date=2019-05-01&rft.volume=540&rft.issue=1&rft.spage=12011&rft.pages=12011-&rft.issn=1757-8981&rft.eissn=1757-899X&rft_id=info:doi/10.1088/1757-899X/540/1/012011&rft_dat=%3Cproquest_hal_p%3E2561086862%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2561086862&rft_id=info:pmid/&rfr_iscdi=true