Experimental Characterisation and Numerical Modelling of the Effect of Cold Rolling on the Nanoindentation Response of Pure Zinc Grains

In this study, the orientation-dependent response of as-received annealed cold-rolled pure zinc and material with thickness reduction rate of 50% grains using instrumented indentation tests is investigated. The experiments were characterized by orientation microscopy and atomic force microscopy scan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IOP conference series. Materials Science and Engineering 2019-05, Vol.540 (1), p.12011
Hauptverfasser: Nguyen, P T N, Abbès, F, Abbès, B, Lecomte, J-S, Schuman, C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, the orientation-dependent response of as-received annealed cold-rolled pure zinc and material with thickness reduction rate of 50% grains using instrumented indentation tests is investigated. The experiments were characterized by orientation microscopy and atomic force microscopy scans to quantify the orientation-dependent mechanical response during nanoindentation. The single crystal hardening parameters are then identified for each family of slip system by using crystal plasticity finite element (CPFE) simulations. Comparison between experimental and numerical results in terms of "load-penetration depth" curves show a good agreement. The increased percentage of cold reduction increases the identified critical resolved shear stress (CRSS). Finally, the accuracy of the model is evaluated by comparing experimental and numerical data issued from nanoindentation response grains of distinct crystalline orientations involving different slip systems activity rates.
ISSN:1757-8981
1757-899X
DOI:10.1088/1757-899X/540/1/012011