Lagrangian stochastic model for the orientation of inertialess non spherical particles in turbulent flows: an efficient numerical method for CFD approach

In this work, we propose a model for the orientation of non-spherical particles arising in multi-phase turbulence flow. This model addresses the macroscopic scale in use in CFD codes enabling turbulence models for the fluid phase. It consists in a stochastic version of the Jeffery equation that can...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & fluids 2023-05, Vol.257
Hauptverfasser: Campana, Lorenzo, Bossy, Mireille, Henry, Christophe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Computers & fluids
container_volume 257
creator Campana, Lorenzo
Bossy, Mireille
Henry, Christophe
description In this work, we propose a model for the orientation of non-spherical particles arising in multi-phase turbulence flow. This model addresses the macroscopic scale in use in CFD codes enabling turbulence models for the fluid phase. It consists in a stochastic version of the Jeffery equation that can be incorporated in a statistical Lagrangian description of the particles suspended in the flow. For use in this context, we propose and analyse a numerical scheme based on the well-known splitting scheme algorithm decoupling the orientation dynamics into their main contributions: stretching and rotation. We detail the implementation in an open-source CFD software. We analyse the weak and strong convergence both of the global scheme and of their sub-parts. Subsequently, the splitting technique yields to a highly efficient hybrid algorithm coupling pure probabilistic and deterministic numerical schemes. Various experiments were implemented and compared with analytic predictions of the model to test the scheme for use in a CFD code.
doi_str_mv 10.1016/j.compfluid.2023.105870
format Article
fullrecord <record><control><sourceid>hal</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03862286v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_03862286v1</sourcerecordid><originalsourceid>FETCH-hal_primary_oai_HAL_hal_03862286v13</originalsourceid><addsrcrecordid>eNqVjc1OwzAQhC0EEuHnGdgrhwQ7SZOUGypUPfTIPVocu3bl2JbtgHgU3hYX9QU4reabmR1CHhitGGXd07HibvbSLHqqalo3ma6Gnl6Qgg39uqR921-SgtJ2Vfbrhl6TmxiPNOumbgvys8dDQHvQaCEmxxXGpDnMbhIGpAuQlAAXtLAJk3YWnARtRUgajYgRbEbRKxE0RwMes8GzkTOQlvCxmFwEadxXfIY8IaTU_PQM7DKfS7NIyk1_Y5vtK6D3wSFXd-RKooni_nxvyeP27X2zKxWa0Qc9Y_geHepx97IfT4w2Q1fXQ_fJmv9kfwH4M2hd</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Lagrangian stochastic model for the orientation of inertialess non spherical particles in turbulent flows: an efficient numerical method for CFD approach</title><source>Access via ScienceDirect (Elsevier)</source><creator>Campana, Lorenzo ; Bossy, Mireille ; Henry, Christophe</creator><creatorcontrib>Campana, Lorenzo ; Bossy, Mireille ; Henry, Christophe</creatorcontrib><description>In this work, we propose a model for the orientation of non-spherical particles arising in multi-phase turbulence flow. This model addresses the macroscopic scale in use in CFD codes enabling turbulence models for the fluid phase. It consists in a stochastic version of the Jeffery equation that can be incorporated in a statistical Lagrangian description of the particles suspended in the flow. For use in this context, we propose and analyse a numerical scheme based on the well-known splitting scheme algorithm decoupling the orientation dynamics into their main contributions: stretching and rotation. We detail the implementation in an open-source CFD software. We analyse the weak and strong convergence both of the global scheme and of their sub-parts. Subsequently, the splitting technique yields to a highly efficient hybrid algorithm coupling pure probabilistic and deterministic numerical schemes. Various experiments were implemented and compared with analytic predictions of the model to test the scheme for use in a CFD code.</description><identifier>ISSN: 0045-7930</identifier><identifier>EISSN: 1879-0747</identifier><identifier>DOI: 10.1016/j.compfluid.2023.105870</identifier><language>eng</language><publisher>Elsevier</publisher><subject>Mathematics ; Numerical Analysis</subject><ispartof>Computers &amp; fluids, 2023-05, Vol.257</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-6972-9022 ; 0000-0001-9269-0093 ; 0000-0001-9269-0093 ; 0000-0002-6972-9022</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://inria.hal.science/hal-03862286$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Campana, Lorenzo</creatorcontrib><creatorcontrib>Bossy, Mireille</creatorcontrib><creatorcontrib>Henry, Christophe</creatorcontrib><title>Lagrangian stochastic model for the orientation of inertialess non spherical particles in turbulent flows: an efficient numerical method for CFD approach</title><title>Computers &amp; fluids</title><description>In this work, we propose a model for the orientation of non-spherical particles arising in multi-phase turbulence flow. This model addresses the macroscopic scale in use in CFD codes enabling turbulence models for the fluid phase. It consists in a stochastic version of the Jeffery equation that can be incorporated in a statistical Lagrangian description of the particles suspended in the flow. For use in this context, we propose and analyse a numerical scheme based on the well-known splitting scheme algorithm decoupling the orientation dynamics into their main contributions: stretching and rotation. We detail the implementation in an open-source CFD software. We analyse the weak and strong convergence both of the global scheme and of their sub-parts. Subsequently, the splitting technique yields to a highly efficient hybrid algorithm coupling pure probabilistic and deterministic numerical schemes. Various experiments were implemented and compared with analytic predictions of the model to test the scheme for use in a CFD code.</description><subject>Mathematics</subject><subject>Numerical Analysis</subject><issn>0045-7930</issn><issn>1879-0747</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqVjc1OwzAQhC0EEuHnGdgrhwQ7SZOUGypUPfTIPVocu3bl2JbtgHgU3hYX9QU4reabmR1CHhitGGXd07HibvbSLHqqalo3ma6Gnl6Qgg39uqR921-SgtJ2Vfbrhl6TmxiPNOumbgvys8dDQHvQaCEmxxXGpDnMbhIGpAuQlAAXtLAJk3YWnARtRUgajYgRbEbRKxE0RwMes8GzkTOQlvCxmFwEadxXfIY8IaTU_PQM7DKfS7NIyk1_Y5vtK6D3wSFXd-RKooni_nxvyeP27X2zKxWa0Qc9Y_geHepx97IfT4w2Q1fXQ_fJmv9kfwH4M2hd</recordid><startdate>202305</startdate><enddate>202305</enddate><creator>Campana, Lorenzo</creator><creator>Bossy, Mireille</creator><creator>Henry, Christophe</creator><general>Elsevier</general><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-6972-9022</orcidid><orcidid>https://orcid.org/0000-0001-9269-0093</orcidid><orcidid>https://orcid.org/0000-0001-9269-0093</orcidid><orcidid>https://orcid.org/0000-0002-6972-9022</orcidid></search><sort><creationdate>202305</creationdate><title>Lagrangian stochastic model for the orientation of inertialess non spherical particles in turbulent flows: an efficient numerical method for CFD approach</title><author>Campana, Lorenzo ; Bossy, Mireille ; Henry, Christophe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-hal_primary_oai_HAL_hal_03862286v13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Mathematics</topic><topic>Numerical Analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Campana, Lorenzo</creatorcontrib><creatorcontrib>Bossy, Mireille</creatorcontrib><creatorcontrib>Henry, Christophe</creatorcontrib><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Computers &amp; fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Campana, Lorenzo</au><au>Bossy, Mireille</au><au>Henry, Christophe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lagrangian stochastic model for the orientation of inertialess non spherical particles in turbulent flows: an efficient numerical method for CFD approach</atitle><jtitle>Computers &amp; fluids</jtitle><date>2023-05</date><risdate>2023</risdate><volume>257</volume><issn>0045-7930</issn><eissn>1879-0747</eissn><abstract>In this work, we propose a model for the orientation of non-spherical particles arising in multi-phase turbulence flow. This model addresses the macroscopic scale in use in CFD codes enabling turbulence models for the fluid phase. It consists in a stochastic version of the Jeffery equation that can be incorporated in a statistical Lagrangian description of the particles suspended in the flow. For use in this context, we propose and analyse a numerical scheme based on the well-known splitting scheme algorithm decoupling the orientation dynamics into their main contributions: stretching and rotation. We detail the implementation in an open-source CFD software. We analyse the weak and strong convergence both of the global scheme and of their sub-parts. Subsequently, the splitting technique yields to a highly efficient hybrid algorithm coupling pure probabilistic and deterministic numerical schemes. Various experiments were implemented and compared with analytic predictions of the model to test the scheme for use in a CFD code.</abstract><pub>Elsevier</pub><doi>10.1016/j.compfluid.2023.105870</doi><orcidid>https://orcid.org/0000-0002-6972-9022</orcidid><orcidid>https://orcid.org/0000-0001-9269-0093</orcidid><orcidid>https://orcid.org/0000-0001-9269-0093</orcidid><orcidid>https://orcid.org/0000-0002-6972-9022</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0045-7930
ispartof Computers & fluids, 2023-05, Vol.257
issn 0045-7930
1879-0747
language eng
recordid cdi_hal_primary_oai_HAL_hal_03862286v1
source Access via ScienceDirect (Elsevier)
subjects Mathematics
Numerical Analysis
title Lagrangian stochastic model for the orientation of inertialess non spherical particles in turbulent flows: an efficient numerical method for CFD approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T23%3A21%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lagrangian%20stochastic%20model%20for%20the%20orientation%20of%20inertialess%20non%20spherical%20particles%20in%20turbulent%20flows:%20an%20efficient%20numerical%20method%20for%20CFD%20approach&rft.jtitle=Computers%20&%20fluids&rft.au=Campana,%20Lorenzo&rft.date=2023-05&rft.volume=257&rft.issn=0045-7930&rft.eissn=1879-0747&rft_id=info:doi/10.1016/j.compfluid.2023.105870&rft_dat=%3Chal%3Eoai_HAL_hal_03862286v1%3C/hal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true