The pluripotent genome in three dimensions is shaped around pluripotency factors

Using 4C technology, higher-order topological features of the pluripotent genome are identified; in pluripotent stem cells, Nanog clusters specifically with other pluripotency genes and this clustering is centred around Nanog-binding sites, suggesting that Nanog helps to shape the three-dimensional...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2013-09, Vol.501 (7466), p.227-231
Hauptverfasser: de Wit, Elzo, Bouwman, Britta A. M., Zhu, Yun, Klous, Petra, Splinter, Erik, Verstegen, Marjon J. A. M., Krijger, Peter H. L., Festuccia, Nicola, Nora, Elphège P., Welling, Maaike, Heard, Edith, Geijsen, Niels, Poot, Raymond A., Chambers, Ian, de Laat, Wouter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 231
container_issue 7466
container_start_page 227
container_title Nature (London)
container_volume 501
creator de Wit, Elzo
Bouwman, Britta A. M.
Zhu, Yun
Klous, Petra
Splinter, Erik
Verstegen, Marjon J. A. M.
Krijger, Peter H. L.
Festuccia, Nicola
Nora, Elphège P.
Welling, Maaike
Heard, Edith
Geijsen, Niels
Poot, Raymond A.
Chambers, Ian
de Laat, Wouter
description Using 4C technology, higher-order topological features of the pluripotent genome are identified; in pluripotent stem cells, Nanog clusters specifically with other pluripotency genes and this clustering is centred around Nanog-binding sites, suggesting that Nanog helps to shape the three-dimensional structure of the pluripotent genome and thereby contributes to the robustness of the pluripotent state. Shaping the genome for pluripotency The three-dimensional structure of the genome is emerging as an additional layer of chromatin organization that is important for gene regulation. Using 4C sequencing technology combined with chromatin factor binding data, Wouter de Laat and colleagues have identified unique higher-order topological features of the pluripotent stem-cell genome. Genomic clusters of binding sites for the pluripotency factors Nanog, Oct4 and Sox2 show a pronounced capacity to contact each other in a pluripotency-specific manner. The authors suggest that the observed spatial clustering of these binding sites in pluripotent stem cells may enhance the transcription efficiency of nearby genes, thereby contributing to the robustness of the pluripotent state. It is becoming increasingly clear that the shape of the genome importantly influences transcription regulation. Pluripotent stem cells such as embryonic stem cells were recently shown to organize their chromosomes into topological domains that are largely invariant between cell types 1 , 2 . Here we combine chromatin conformation capture technologies with chromatin factor binding data to demonstrate that inactive chromatin is unusually disorganized in pluripotent stem-cell nuclei. We show that gene promoters engage in contacts between topological domains in a largely tissue-independent manner, whereas enhancers have a more tissue-restricted interaction profile. Notably, genomic clusters of pluripotency factor binding sites find each other very efficiently, in a manner that is strictly pluripotent-stem-cell-specific, dependent on the presence of Oct4 and Nanog protein and inducible after artificial recruitment of Nanog to a selected chromosomal site. We conclude that pluripotent stem cells have a unique higher-order genome structure shaped by pluripotency factors. We speculate that this interactome enhances the robustness of the pluripotent state.
doi_str_mv 10.1038/nature12420
format Article
fullrecord <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03862065v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A342875892</galeid><sourcerecordid>A342875892</sourcerecordid><originalsourceid>FETCH-LOGICAL-c656t-10a1d5f48502cf1552acb0f1f64b48c6739b5e97c667aa925a9263ca43ef8dea3</originalsourceid><addsrcrecordid>eNp10t1v0zAQAPAIgVgZPPGOInhhggx_x3msqsEmVYCgiEfLdS6tp8TO7ARt_z2uOkaLgizL0vl3J_l8WfYSo3OMqPzg9DAGwIQR9CibYVaKgglZPs5mCBFZIEnFSfYsxmuEEMcle5qdEColrSidZV9XW8j7dgy29wO4Id-A8x3k1uXDNgDkte3ARetdzG3M41b3UOc6-NHVB3nmLm-0GXyIz7MnjW4jvLg_T7MfHy9Wi8ti-eXT1WK-LIzgYigw0rjmDZMcEdNgzok2a9TgRrA1k0aUtFpzqEojRKl1RXjaghrNKDSyBk1Ps7N93a1uVR9sp8Od8tqqy_lS7WKpNYIgwX_hZN_ubR_8zQhxUJ2NBtpWO_BjVJhRIrAgJUv0zT_02o_BpZckxTgVnFTlX7XRLSjrGj8EbXZF1ZwyIksuK5JUMaFSgyHo1jtobAof-dcT3vT2Rh2i8wmUVg2dNZNVz44SkhngdtjoMUZ19f3bsX33fztf_Vx8ntQm-BgDNA__gJHajaY6GM2kX913dlx3UD_YP7OYwPs9iOnKbSActH6i3m_iOuj9</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1445365297</pqid></control><display><type>article</type><title>The pluripotent genome in three dimensions is shaped around pluripotency factors</title><source>MEDLINE</source><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>de Wit, Elzo ; Bouwman, Britta A. M. ; Zhu, Yun ; Klous, Petra ; Splinter, Erik ; Verstegen, Marjon J. A. M. ; Krijger, Peter H. L. ; Festuccia, Nicola ; Nora, Elphège P. ; Welling, Maaike ; Heard, Edith ; Geijsen, Niels ; Poot, Raymond A. ; Chambers, Ian ; de Laat, Wouter</creator><creatorcontrib>de Wit, Elzo ; Bouwman, Britta A. M. ; Zhu, Yun ; Klous, Petra ; Splinter, Erik ; Verstegen, Marjon J. A. M. ; Krijger, Peter H. L. ; Festuccia, Nicola ; Nora, Elphège P. ; Welling, Maaike ; Heard, Edith ; Geijsen, Niels ; Poot, Raymond A. ; Chambers, Ian ; de Laat, Wouter</creatorcontrib><description>Using 4C technology, higher-order topological features of the pluripotent genome are identified; in pluripotent stem cells, Nanog clusters specifically with other pluripotency genes and this clustering is centred around Nanog-binding sites, suggesting that Nanog helps to shape the three-dimensional structure of the pluripotent genome and thereby contributes to the robustness of the pluripotent state. Shaping the genome for pluripotency The three-dimensional structure of the genome is emerging as an additional layer of chromatin organization that is important for gene regulation. Using 4C sequencing technology combined with chromatin factor binding data, Wouter de Laat and colleagues have identified unique higher-order topological features of the pluripotent stem-cell genome. Genomic clusters of binding sites for the pluripotency factors Nanog, Oct4 and Sox2 show a pronounced capacity to contact each other in a pluripotency-specific manner. The authors suggest that the observed spatial clustering of these binding sites in pluripotent stem cells may enhance the transcription efficiency of nearby genes, thereby contributing to the robustness of the pluripotent state. It is becoming increasingly clear that the shape of the genome importantly influences transcription regulation. Pluripotent stem cells such as embryonic stem cells were recently shown to organize their chromosomes into topological domains that are largely invariant between cell types 1 , 2 . Here we combine chromatin conformation capture technologies with chromatin factor binding data to demonstrate that inactive chromatin is unusually disorganized in pluripotent stem-cell nuclei. We show that gene promoters engage in contacts between topological domains in a largely tissue-independent manner, whereas enhancers have a more tissue-restricted interaction profile. Notably, genomic clusters of pluripotency factor binding sites find each other very efficiently, in a manner that is strictly pluripotent-stem-cell-specific, dependent on the presence of Oct4 and Nanog protein and inducible after artificial recruitment of Nanog to a selected chromosomal site. We conclude that pluripotent stem cells have a unique higher-order genome structure shaped by pluripotency factors. We speculate that this interactome enhances the robustness of the pluripotent state.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature12420</identifier><identifier>PMID: 23883933</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/114 ; 631/337/100 ; 631/337/386 ; 631/532/2064 ; Animals ; Binding Sites ; Cell Line ; Chromatin - chemistry ; Chromatin - genetics ; Chromatin - metabolism ; Chromatin Immunoprecipitation ; Chromosome Positioning ; Chromosomes ; DNA sequencing ; Embryonic Stem Cells - cytology ; Embryonic Stem Cells - metabolism ; Enhancer Elements, Genetic ; Gene expression ; Genetic regulation ; Genome - genetics ; Genomes ; Homeodomain Proteins - metabolism ; Humanities and Social Sciences ; Imaging, Three-Dimensional ; Induced Pluripotent Stem Cells - cytology ; Induced Pluripotent Stem Cells - metabolism ; letter ; Life Sciences ; Mice ; Molecular Imaging ; multidisciplinary ; Nanog Homeobox Protein ; Nucleotide sequencing ; Octamer Transcription Factor-3 - metabolism ; Organ Specificity ; Pluripotent Stem Cells - cytology ; Pluripotent Stem Cells - metabolism ; Promoter Regions, Genetic ; Properties ; Science ; SOXB1 Transcription Factors - metabolism ; Stem cells</subject><ispartof>Nature (London), 2013-09, Vol.501 (7466), p.227-231</ispartof><rights>Springer Nature Limited 2013</rights><rights>COPYRIGHT 2013 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Sep 12, 2013</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c656t-10a1d5f48502cf1552acb0f1f64b48c6739b5e97c667aa925a9263ca43ef8dea3</citedby><cites>FETCH-LOGICAL-c656t-10a1d5f48502cf1552acb0f1f64b48c6739b5e97c667aa925a9263ca43ef8dea3</cites><orcidid>0000-0001-5962-8263</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nature12420$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nature12420$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23883933$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03862065$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>de Wit, Elzo</creatorcontrib><creatorcontrib>Bouwman, Britta A. M.</creatorcontrib><creatorcontrib>Zhu, Yun</creatorcontrib><creatorcontrib>Klous, Petra</creatorcontrib><creatorcontrib>Splinter, Erik</creatorcontrib><creatorcontrib>Verstegen, Marjon J. A. M.</creatorcontrib><creatorcontrib>Krijger, Peter H. L.</creatorcontrib><creatorcontrib>Festuccia, Nicola</creatorcontrib><creatorcontrib>Nora, Elphège P.</creatorcontrib><creatorcontrib>Welling, Maaike</creatorcontrib><creatorcontrib>Heard, Edith</creatorcontrib><creatorcontrib>Geijsen, Niels</creatorcontrib><creatorcontrib>Poot, Raymond A.</creatorcontrib><creatorcontrib>Chambers, Ian</creatorcontrib><creatorcontrib>de Laat, Wouter</creatorcontrib><title>The pluripotent genome in three dimensions is shaped around pluripotency factors</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Using 4C technology, higher-order topological features of the pluripotent genome are identified; in pluripotent stem cells, Nanog clusters specifically with other pluripotency genes and this clustering is centred around Nanog-binding sites, suggesting that Nanog helps to shape the three-dimensional structure of the pluripotent genome and thereby contributes to the robustness of the pluripotent state. Shaping the genome for pluripotency The three-dimensional structure of the genome is emerging as an additional layer of chromatin organization that is important for gene regulation. Using 4C sequencing technology combined with chromatin factor binding data, Wouter de Laat and colleagues have identified unique higher-order topological features of the pluripotent stem-cell genome. Genomic clusters of binding sites for the pluripotency factors Nanog, Oct4 and Sox2 show a pronounced capacity to contact each other in a pluripotency-specific manner. The authors suggest that the observed spatial clustering of these binding sites in pluripotent stem cells may enhance the transcription efficiency of nearby genes, thereby contributing to the robustness of the pluripotent state. It is becoming increasingly clear that the shape of the genome importantly influences transcription regulation. Pluripotent stem cells such as embryonic stem cells were recently shown to organize their chromosomes into topological domains that are largely invariant between cell types 1 , 2 . Here we combine chromatin conformation capture technologies with chromatin factor binding data to demonstrate that inactive chromatin is unusually disorganized in pluripotent stem-cell nuclei. We show that gene promoters engage in contacts between topological domains in a largely tissue-independent manner, whereas enhancers have a more tissue-restricted interaction profile. Notably, genomic clusters of pluripotency factor binding sites find each other very efficiently, in a manner that is strictly pluripotent-stem-cell-specific, dependent on the presence of Oct4 and Nanog protein and inducible after artificial recruitment of Nanog to a selected chromosomal site. We conclude that pluripotent stem cells have a unique higher-order genome structure shaped by pluripotency factors. We speculate that this interactome enhances the robustness of the pluripotent state.</description><subject>631/114</subject><subject>631/337/100</subject><subject>631/337/386</subject><subject>631/532/2064</subject><subject>Animals</subject><subject>Binding Sites</subject><subject>Cell Line</subject><subject>Chromatin - chemistry</subject><subject>Chromatin - genetics</subject><subject>Chromatin - metabolism</subject><subject>Chromatin Immunoprecipitation</subject><subject>Chromosome Positioning</subject><subject>Chromosomes</subject><subject>DNA sequencing</subject><subject>Embryonic Stem Cells - cytology</subject><subject>Embryonic Stem Cells - metabolism</subject><subject>Enhancer Elements, Genetic</subject><subject>Gene expression</subject><subject>Genetic regulation</subject><subject>Genome - genetics</subject><subject>Genomes</subject><subject>Homeodomain Proteins - metabolism</subject><subject>Humanities and Social Sciences</subject><subject>Imaging, Three-Dimensional</subject><subject>Induced Pluripotent Stem Cells - cytology</subject><subject>Induced Pluripotent Stem Cells - metabolism</subject><subject>letter</subject><subject>Life Sciences</subject><subject>Mice</subject><subject>Molecular Imaging</subject><subject>multidisciplinary</subject><subject>Nanog Homeobox Protein</subject><subject>Nucleotide sequencing</subject><subject>Octamer Transcription Factor-3 - metabolism</subject><subject>Organ Specificity</subject><subject>Pluripotent Stem Cells - cytology</subject><subject>Pluripotent Stem Cells - metabolism</subject><subject>Promoter Regions, Genetic</subject><subject>Properties</subject><subject>Science</subject><subject>SOXB1 Transcription Factors - metabolism</subject><subject>Stem cells</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp10t1v0zAQAPAIgVgZPPGOInhhggx_x3msqsEmVYCgiEfLdS6tp8TO7ARt_z2uOkaLgizL0vl3J_l8WfYSo3OMqPzg9DAGwIQR9CibYVaKgglZPs5mCBFZIEnFSfYsxmuEEMcle5qdEColrSidZV9XW8j7dgy29wO4Id-A8x3k1uXDNgDkte3ARetdzG3M41b3UOc6-NHVB3nmLm-0GXyIz7MnjW4jvLg_T7MfHy9Wi8ti-eXT1WK-LIzgYigw0rjmDZMcEdNgzok2a9TgRrA1k0aUtFpzqEojRKl1RXjaghrNKDSyBk1Ps7N93a1uVR9sp8Od8tqqy_lS7WKpNYIgwX_hZN_ubR_8zQhxUJ2NBtpWO_BjVJhRIrAgJUv0zT_02o_BpZckxTgVnFTlX7XRLSjrGj8EbXZF1ZwyIksuK5JUMaFSgyHo1jtobAof-dcT3vT2Rh2i8wmUVg2dNZNVz44SkhngdtjoMUZ19f3bsX33fztf_Vx8ntQm-BgDNA__gJHajaY6GM2kX913dlx3UD_YP7OYwPs9iOnKbSActH6i3m_iOuj9</recordid><startdate>20130912</startdate><enddate>20130912</enddate><creator>de Wit, Elzo</creator><creator>Bouwman, Britta A. M.</creator><creator>Zhu, Yun</creator><creator>Klous, Petra</creator><creator>Splinter, Erik</creator><creator>Verstegen, Marjon J. A. M.</creator><creator>Krijger, Peter H. L.</creator><creator>Festuccia, Nicola</creator><creator>Nora, Elphège P.</creator><creator>Welling, Maaike</creator><creator>Heard, Edith</creator><creator>Geijsen, Niels</creator><creator>Poot, Raymond A.</creator><creator>Chambers, Ian</creator><creator>de Laat, Wouter</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-5962-8263</orcidid></search><sort><creationdate>20130912</creationdate><title>The pluripotent genome in three dimensions is shaped around pluripotency factors</title><author>de Wit, Elzo ; Bouwman, Britta A. M. ; Zhu, Yun ; Klous, Petra ; Splinter, Erik ; Verstegen, Marjon J. A. M. ; Krijger, Peter H. L. ; Festuccia, Nicola ; Nora, Elphège P. ; Welling, Maaike ; Heard, Edith ; Geijsen, Niels ; Poot, Raymond A. ; Chambers, Ian ; de Laat, Wouter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c656t-10a1d5f48502cf1552acb0f1f64b48c6739b5e97c667aa925a9263ca43ef8dea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>631/114</topic><topic>631/337/100</topic><topic>631/337/386</topic><topic>631/532/2064</topic><topic>Animals</topic><topic>Binding Sites</topic><topic>Cell Line</topic><topic>Chromatin - chemistry</topic><topic>Chromatin - genetics</topic><topic>Chromatin - metabolism</topic><topic>Chromatin Immunoprecipitation</topic><topic>Chromosome Positioning</topic><topic>Chromosomes</topic><topic>DNA sequencing</topic><topic>Embryonic Stem Cells - cytology</topic><topic>Embryonic Stem Cells - metabolism</topic><topic>Enhancer Elements, Genetic</topic><topic>Gene expression</topic><topic>Genetic regulation</topic><topic>Genome - genetics</topic><topic>Genomes</topic><topic>Homeodomain Proteins - metabolism</topic><topic>Humanities and Social Sciences</topic><topic>Imaging, Three-Dimensional</topic><topic>Induced Pluripotent Stem Cells - cytology</topic><topic>Induced Pluripotent Stem Cells - metabolism</topic><topic>letter</topic><topic>Life Sciences</topic><topic>Mice</topic><topic>Molecular Imaging</topic><topic>multidisciplinary</topic><topic>Nanog Homeobox Protein</topic><topic>Nucleotide sequencing</topic><topic>Octamer Transcription Factor-3 - metabolism</topic><topic>Organ Specificity</topic><topic>Pluripotent Stem Cells - cytology</topic><topic>Pluripotent Stem Cells - metabolism</topic><topic>Promoter Regions, Genetic</topic><topic>Properties</topic><topic>Science</topic><topic>SOXB1 Transcription Factors - metabolism</topic><topic>Stem cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Wit, Elzo</creatorcontrib><creatorcontrib>Bouwman, Britta A. M.</creatorcontrib><creatorcontrib>Zhu, Yun</creatorcontrib><creatorcontrib>Klous, Petra</creatorcontrib><creatorcontrib>Splinter, Erik</creatorcontrib><creatorcontrib>Verstegen, Marjon J. A. M.</creatorcontrib><creatorcontrib>Krijger, Peter H. L.</creatorcontrib><creatorcontrib>Festuccia, Nicola</creatorcontrib><creatorcontrib>Nora, Elphège P.</creatorcontrib><creatorcontrib>Welling, Maaike</creatorcontrib><creatorcontrib>Heard, Edith</creatorcontrib><creatorcontrib>Geijsen, Niels</creatorcontrib><creatorcontrib>Poot, Raymond A.</creatorcontrib><creatorcontrib>Chambers, Ian</creatorcontrib><creatorcontrib>de Laat, Wouter</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Wit, Elzo</au><au>Bouwman, Britta A. M.</au><au>Zhu, Yun</au><au>Klous, Petra</au><au>Splinter, Erik</au><au>Verstegen, Marjon J. A. M.</au><au>Krijger, Peter H. L.</au><au>Festuccia, Nicola</au><au>Nora, Elphège P.</au><au>Welling, Maaike</au><au>Heard, Edith</au><au>Geijsen, Niels</au><au>Poot, Raymond A.</au><au>Chambers, Ian</au><au>de Laat, Wouter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The pluripotent genome in three dimensions is shaped around pluripotency factors</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2013-09-12</date><risdate>2013</risdate><volume>501</volume><issue>7466</issue><spage>227</spage><epage>231</epage><pages>227-231</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>Using 4C technology, higher-order topological features of the pluripotent genome are identified; in pluripotent stem cells, Nanog clusters specifically with other pluripotency genes and this clustering is centred around Nanog-binding sites, suggesting that Nanog helps to shape the three-dimensional structure of the pluripotent genome and thereby contributes to the robustness of the pluripotent state. Shaping the genome for pluripotency The three-dimensional structure of the genome is emerging as an additional layer of chromatin organization that is important for gene regulation. Using 4C sequencing technology combined with chromatin factor binding data, Wouter de Laat and colleagues have identified unique higher-order topological features of the pluripotent stem-cell genome. Genomic clusters of binding sites for the pluripotency factors Nanog, Oct4 and Sox2 show a pronounced capacity to contact each other in a pluripotency-specific manner. The authors suggest that the observed spatial clustering of these binding sites in pluripotent stem cells may enhance the transcription efficiency of nearby genes, thereby contributing to the robustness of the pluripotent state. It is becoming increasingly clear that the shape of the genome importantly influences transcription regulation. Pluripotent stem cells such as embryonic stem cells were recently shown to organize their chromosomes into topological domains that are largely invariant between cell types 1 , 2 . Here we combine chromatin conformation capture technologies with chromatin factor binding data to demonstrate that inactive chromatin is unusually disorganized in pluripotent stem-cell nuclei. We show that gene promoters engage in contacts between topological domains in a largely tissue-independent manner, whereas enhancers have a more tissue-restricted interaction profile. Notably, genomic clusters of pluripotency factor binding sites find each other very efficiently, in a manner that is strictly pluripotent-stem-cell-specific, dependent on the presence of Oct4 and Nanog protein and inducible after artificial recruitment of Nanog to a selected chromosomal site. We conclude that pluripotent stem cells have a unique higher-order genome structure shaped by pluripotency factors. We speculate that this interactome enhances the robustness of the pluripotent state.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>23883933</pmid><doi>10.1038/nature12420</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-5962-8263</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2013-09, Vol.501 (7466), p.227-231
issn 0028-0836
1476-4687
language eng
recordid cdi_hal_primary_oai_HAL_hal_03862065v1
source MEDLINE; Nature Journals Online; SpringerLink Journals - AutoHoldings
subjects 631/114
631/337/100
631/337/386
631/532/2064
Animals
Binding Sites
Cell Line
Chromatin - chemistry
Chromatin - genetics
Chromatin - metabolism
Chromatin Immunoprecipitation
Chromosome Positioning
Chromosomes
DNA sequencing
Embryonic Stem Cells - cytology
Embryonic Stem Cells - metabolism
Enhancer Elements, Genetic
Gene expression
Genetic regulation
Genome - genetics
Genomes
Homeodomain Proteins - metabolism
Humanities and Social Sciences
Imaging, Three-Dimensional
Induced Pluripotent Stem Cells - cytology
Induced Pluripotent Stem Cells - metabolism
letter
Life Sciences
Mice
Molecular Imaging
multidisciplinary
Nanog Homeobox Protein
Nucleotide sequencing
Octamer Transcription Factor-3 - metabolism
Organ Specificity
Pluripotent Stem Cells - cytology
Pluripotent Stem Cells - metabolism
Promoter Regions, Genetic
Properties
Science
SOXB1 Transcription Factors - metabolism
Stem cells
title The pluripotent genome in three dimensions is shaped around pluripotency factors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T13%3A18%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20pluripotent%20genome%20in%20three%20dimensions%20is%20shaped%20around%20pluripotency%20factors&rft.jtitle=Nature%20(London)&rft.au=de%20Wit,%20Elzo&rft.date=2013-09-12&rft.volume=501&rft.issue=7466&rft.spage=227&rft.epage=231&rft.pages=227-231&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/nature12420&rft_dat=%3Cgale_hal_p%3EA342875892%3C/gale_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1445365297&rft_id=info:pmid/23883933&rft_galeid=A342875892&rfr_iscdi=true