Uncertainty quantification in a mechanical submodel driven by a Wasserstein-GAN
Gespeichert in:
Veröffentlicht in: | IFAC-PapersOnLine 2022-01, Vol.55 (20), p.469-474 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 474 |
---|---|
container_issue | 20 |
container_start_page | 469 |
container_title | IFAC-PapersOnLine |
container_volume | 55 |
creator | BOUKRAICHI, Hamza AKKARI, Nissrine CASENAVE, Fabien RYCKELYNCK, David |
description | |
doi_str_mv | 10.1016/j.ifacol.2022.09.139 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03853628v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_03853628v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-231e42dcde23369dc385ad79deb1c2f8218e346ec74d930d8df59e9227f3dcc13</originalsourceid><addsrcrecordid>eNpNkDFrwzAUhEVpoSHNP-igtYNdSc-xpTGENimEZmnoKBTpmSg4cis5Af_72qSUTve4d3fDR8gjZzlnvHw-5r42tm1ywYTImco5qBsyEQWbZ1KVcPvvviezlI6MMaHKolJyQra7YDF2xoeup99nEzpfe2s63wbqAzX0hPZgwmA1NJ33p9ZhQ130Fwx03w__T5MSxtShD9lq8f5A7mrTJJz96pTsXl8-lutss129LRebzALwLhPAsRDOOhQApXIW5Ny4SjnccytqKbhEKEq0VeEUMCddPVeohKhqcNZymJKn6-7BNPor-pOJvW6N1-vFRo8eGxahFPIyZotr1sY2pYj1X4EzPTLUR31lqEeGmik9MIQf3WhnAw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Uncertainty quantification in a mechanical submodel driven by a Wasserstein-GAN</title><source>Alma/SFX Local Collection</source><creator>BOUKRAICHI, Hamza ; AKKARI, Nissrine ; CASENAVE, Fabien ; RYCKELYNCK, David</creator><creatorcontrib>BOUKRAICHI, Hamza ; AKKARI, Nissrine ; CASENAVE, Fabien ; RYCKELYNCK, David</creatorcontrib><identifier>ISSN: 2405-8963</identifier><identifier>EISSN: 2405-8963</identifier><identifier>DOI: 10.1016/j.ifacol.2022.09.139</identifier><language>eng</language><publisher>Elsevier</publisher><subject>Machine Learning ; Statistics</subject><ispartof>IFAC-PapersOnLine, 2022-01, Vol.55 (20), p.469-474</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-231e42dcde23369dc385ad79deb1c2f8218e346ec74d930d8df59e9227f3dcc13</citedby><cites>FETCH-LOGICAL-c331t-231e42dcde23369dc385ad79deb1c2f8218e346ec74d930d8df59e9227f3dcc13</cites><orcidid>0000-0003-3268-4892</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27922,27923</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03853628$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>BOUKRAICHI, Hamza</creatorcontrib><creatorcontrib>AKKARI, Nissrine</creatorcontrib><creatorcontrib>CASENAVE, Fabien</creatorcontrib><creatorcontrib>RYCKELYNCK, David</creatorcontrib><title>Uncertainty quantification in a mechanical submodel driven by a Wasserstein-GAN</title><title>IFAC-PapersOnLine</title><subject>Machine Learning</subject><subject>Statistics</subject><issn>2405-8963</issn><issn>2405-8963</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpNkDFrwzAUhEVpoSHNP-igtYNdSc-xpTGENimEZmnoKBTpmSg4cis5Af_72qSUTve4d3fDR8gjZzlnvHw-5r42tm1ywYTImco5qBsyEQWbZ1KVcPvvviezlI6MMaHKolJyQra7YDF2xoeup99nEzpfe2s63wbqAzX0hPZgwmA1NJ33p9ZhQ130Fwx03w__T5MSxtShD9lq8f5A7mrTJJz96pTsXl8-lutss129LRebzALwLhPAsRDOOhQApXIW5Ny4SjnccytqKbhEKEq0VeEUMCddPVeohKhqcNZymJKn6-7BNPor-pOJvW6N1-vFRo8eGxahFPIyZotr1sY2pYj1X4EzPTLUR31lqEeGmik9MIQf3WhnAw</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>BOUKRAICHI, Hamza</creator><creator>AKKARI, Nissrine</creator><creator>CASENAVE, Fabien</creator><creator>RYCKELYNCK, David</creator><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-3268-4892</orcidid></search><sort><creationdate>20220101</creationdate><title>Uncertainty quantification in a mechanical submodel driven by a Wasserstein-GAN</title><author>BOUKRAICHI, Hamza ; AKKARI, Nissrine ; CASENAVE, Fabien ; RYCKELYNCK, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-231e42dcde23369dc385ad79deb1c2f8218e346ec74d930d8df59e9227f3dcc13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Machine Learning</topic><topic>Statistics</topic><toplevel>online_resources</toplevel><creatorcontrib>BOUKRAICHI, Hamza</creatorcontrib><creatorcontrib>AKKARI, Nissrine</creatorcontrib><creatorcontrib>CASENAVE, Fabien</creatorcontrib><creatorcontrib>RYCKELYNCK, David</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IFAC-PapersOnLine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BOUKRAICHI, Hamza</au><au>AKKARI, Nissrine</au><au>CASENAVE, Fabien</au><au>RYCKELYNCK, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uncertainty quantification in a mechanical submodel driven by a Wasserstein-GAN</atitle><jtitle>IFAC-PapersOnLine</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>55</volume><issue>20</issue><spage>469</spage><epage>474</epage><pages>469-474</pages><issn>2405-8963</issn><eissn>2405-8963</eissn><pub>Elsevier</pub><doi>10.1016/j.ifacol.2022.09.139</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-3268-4892</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2405-8963 |
ispartof | IFAC-PapersOnLine, 2022-01, Vol.55 (20), p.469-474 |
issn | 2405-8963 2405-8963 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03853628v1 |
source | Alma/SFX Local Collection |
subjects | Machine Learning Statistics |
title | Uncertainty quantification in a mechanical submodel driven by a Wasserstein-GAN |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T19%3A00%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uncertainty%20quantification%20in%20a%20mechanical%20submodel%20driven%20by%20a%20Wasserstein-GAN&rft.jtitle=IFAC-PapersOnLine&rft.au=BOUKRAICHI,%20Hamza&rft.date=2022-01-01&rft.volume=55&rft.issue=20&rft.spage=469&rft.epage=474&rft.pages=469-474&rft.issn=2405-8963&rft.eissn=2405-8963&rft_id=info:doi/10.1016/j.ifacol.2022.09.139&rft_dat=%3Chal_cross%3Eoai_HAL_hal_03853628v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |