On the classification of partition quantum groups
This is a survey on some results obtained recently in the classification of compact quantum groups associated to partitions, with a focus on the non-crossing case. We take a global look at the main results in the subject and highlight some key features of the methods used. We conclude by several sug...
Gespeichert in:
Veröffentlicht in: | Expositiones mathematicae 2021-06, Vol.39 (2), p.238-270 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 270 |
---|---|
container_issue | 2 |
container_start_page | 238 |
container_title | Expositiones mathematicae |
container_volume | 39 |
creator | Freslon, Amaury |
description | This is a survey on some results obtained recently in the classification of compact quantum groups associated to partitions, with a focus on the non-crossing case. We take a global look at the main results in the subject and highlight some key features of the methods used. We conclude by several suggestions for pushing further the classification. |
doi_str_mv | 10.1016/j.exmath.2021.02.001 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03850832v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0723086921000050</els_id><sourcerecordid>S0723086921000050</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-2d0364094e6b1bc3641c9c8a136bcca97353830432d28b0e59c259beff373f5f3</originalsourceid><addsrcrecordid>eNqNkE9LwzAYh4MoOKffwEOvIq1vkqZNL8Io6oTBLnoOaZq4jK2ZTTb125utY0fx9P7h97y8PAjdYsgw4OJhmenvtQyLjADBGZAMAJ-hEeYlT6GsyDkaQUloCryoLtGV90sAWrKcjxCed0lY6EStpPfWWCWDdV3iTLKRfbCH4XMru7BdJx-92278NbowcuX1zbGO0fvz01s9TWfzl9d6MksVpSykpAVa5FDlumhwo2KPVaW4xLRolJJVSRnlFHJKWsIb0KxShFWNNoaW1DBDx-huuLuQK7Hp7Vr2P8JJK6aTmdjvgHIGnJIdjtl8yKreed9rcwIwiL0isRSDIrFXJICIqChi9wP2pRtnvLK6U_qEAkBRYFzlLHbx0THi_0_XNhxM1m7bhYg-DqiOwnZW9-KIt7bXKojW2b8__QV2aZCU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the classification of partition quantum groups</title><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>Access via ScienceDirect (Elsevier)</source><creator>Freslon, Amaury</creator><creatorcontrib>Freslon, Amaury</creatorcontrib><description>This is a survey on some results obtained recently in the classification of compact quantum groups associated to partitions, with a focus on the non-crossing case. We take a global look at the main results in the subject and highlight some key features of the methods used. We conclude by several suggestions for pushing further the classification.</description><identifier>ISSN: 0723-0869</identifier><identifier>EISSN: 1878-0792</identifier><identifier>DOI: 10.1016/j.exmath.2021.02.001</identifier><language>eng</language><publisher>MUNICH: Elsevier GmbH</publisher><subject>Compact quantum groups ; Mathematics ; Noncrossing partitions ; Operator Algebras ; Physical Sciences ; Representation theory ; Science & Technology</subject><ispartof>Expositiones mathematicae, 2021-06, Vol.39 (2), p.238-270</ispartof><rights>2021 Elsevier GmbH</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>0</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000661194500004</woscitedreferencesoriginalsourcerecordid><cites>FETCH-LOGICAL-c335t-2d0364094e6b1bc3641c9c8a136bcca97353830432d28b0e59c259beff373f5f3</cites><orcidid>0000-0002-1499-5374</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.exmath.2021.02.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,315,781,785,886,3551,27929,27930,39263,46000</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03850832$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Freslon, Amaury</creatorcontrib><title>On the classification of partition quantum groups</title><title>Expositiones mathematicae</title><addtitle>EXPO MATH</addtitle><description>This is a survey on some results obtained recently in the classification of compact quantum groups associated to partitions, with a focus on the non-crossing case. We take a global look at the main results in the subject and highlight some key features of the methods used. We conclude by several suggestions for pushing further the classification.</description><subject>Compact quantum groups</subject><subject>Mathematics</subject><subject>Noncrossing partitions</subject><subject>Operator Algebras</subject><subject>Physical Sciences</subject><subject>Representation theory</subject><subject>Science & Technology</subject><issn>0723-0869</issn><issn>1878-0792</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkE9LwzAYh4MoOKffwEOvIq1vkqZNL8Io6oTBLnoOaZq4jK2ZTTb125utY0fx9P7h97y8PAjdYsgw4OJhmenvtQyLjADBGZAMAJ-hEeYlT6GsyDkaQUloCryoLtGV90sAWrKcjxCed0lY6EStpPfWWCWDdV3iTLKRfbCH4XMru7BdJx-92278NbowcuX1zbGO0fvz01s9TWfzl9d6MksVpSykpAVa5FDlumhwo2KPVaW4xLRolJJVSRnlFHJKWsIb0KxShFWNNoaW1DBDx-huuLuQK7Hp7Vr2P8JJK6aTmdjvgHIGnJIdjtl8yKreed9rcwIwiL0isRSDIrFXJICIqChi9wP2pRtnvLK6U_qEAkBRYFzlLHbx0THi_0_XNhxM1m7bhYg-DqiOwnZW9-KIt7bXKojW2b8__QV2aZCU</recordid><startdate>202106</startdate><enddate>202106</enddate><creator>Freslon, Amaury</creator><general>Elsevier GmbH</general><general>Elsevier</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-1499-5374</orcidid></search><sort><creationdate>202106</creationdate><title>On the classification of partition quantum groups</title><author>Freslon, Amaury</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-2d0364094e6b1bc3641c9c8a136bcca97353830432d28b0e59c259beff373f5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Compact quantum groups</topic><topic>Mathematics</topic><topic>Noncrossing partitions</topic><topic>Operator Algebras</topic><topic>Physical Sciences</topic><topic>Representation theory</topic><topic>Science & Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Freslon, Amaury</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Expositiones mathematicae</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Freslon, Amaury</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the classification of partition quantum groups</atitle><jtitle>Expositiones mathematicae</jtitle><stitle>EXPO MATH</stitle><date>2021-06</date><risdate>2021</risdate><volume>39</volume><issue>2</issue><spage>238</spage><epage>270</epage><pages>238-270</pages><issn>0723-0869</issn><eissn>1878-0792</eissn><abstract>This is a survey on some results obtained recently in the classification of compact quantum groups associated to partitions, with a focus on the non-crossing case. We take a global look at the main results in the subject and highlight some key features of the methods used. We conclude by several suggestions for pushing further the classification.</abstract><cop>MUNICH</cop><pub>Elsevier GmbH</pub><doi>10.1016/j.exmath.2021.02.001</doi><tpages>33</tpages><orcidid>https://orcid.org/0000-0002-1499-5374</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0723-0869 |
ispartof | Expositiones mathematicae, 2021-06, Vol.39 (2), p.238-270 |
issn | 0723-0869 1878-0792 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03850832v1 |
source | Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Access via ScienceDirect (Elsevier) |
subjects | Compact quantum groups Mathematics Noncrossing partitions Operator Algebras Physical Sciences Representation theory Science & Technology |
title | On the classification of partition quantum groups |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T07%3A37%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20classification%20of%20partition%20quantum%20groups&rft.jtitle=Expositiones%20mathematicae&rft.au=Freslon,%20Amaury&rft.date=2021-06&rft.volume=39&rft.issue=2&rft.spage=238&rft.epage=270&rft.pages=238-270&rft.issn=0723-0869&rft.eissn=1878-0792&rft_id=info:doi/10.1016/j.exmath.2021.02.001&rft_dat=%3Celsevier_hal_p%3ES0723086921000050%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0723086921000050&rfr_iscdi=true |