Visualizing In‐Plane Junctions in Nitrogen‐Doped Graphene
Controlling the spatial distribution of dopants in graphene is the gateway to the realization of graphene‐based electronic components. Here, it is shown that a submonolayer of self‐assembled physisorbed molecules can be used as a resist during a post‐synthesis nitrogen doping process to realize a na...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2022-11, Vol.32 (47), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 47 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 32 |
creator | Bouatou, Mehdi Chacon, Cyril Lorentzen, Aleksander Bach Ngo, Huu Thoai Girard, Yann Repain, Vincent Bellec, Amandine Rousset, Sylvie Brandbyge, Mads Dappe, Yannick J. Lagoute, Jérôme |
description | Controlling the spatial distribution of dopants in graphene is the gateway to the realization of graphene‐based electronic components. Here, it is shown that a submonolayer of self‐assembled physisorbed molecules can be used as a resist during a post‐synthesis nitrogen doping process to realize a nanopatterning of nitrogen dopants in graphene. The resulting formation of domains with different nitrogen concentrations allows obtaining n–n’ and p–n junctions in graphene. A scanning tunneling microscopy is used to measure the electronic properties of the junctions at the atomic scale and reveal their intrinsic width that is found to be ≈7 nm corresponding to a sharp junction regime.
Single layer C60 islands are used as a mask during the exposure of graphene to activated nitrogen, allowing the formation of in‐plane junctions separating domains with different levels of doping. Scanning tunneling microscopy is used to measure the structure and electronic properties of the junctions. Sharp junctions are obtained with a typical width of 7 nm. |
doi_str_mv | 10.1002/adfm.202208048 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03850544v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2737439206</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3918-7085b8931e4bb76c9529c2c33705fb8db799667f165d263e030bdf205f6177a83</originalsourceid><addsrcrecordid>eNqFkL1OwzAUhS0EEqWwMkdiYki5thPbGRiqQn9Q-RkAsVlO4rSuUifEDahMPALPyJOQKKiMTPfqnu9cHR2ETjEMMAC5UGm2HhAgBAQEYg_1MMPMp0DE_m7HL4foyLkVAOacBj10-WxcrXLzYezCm9nvz6-HXFnt3dQ22ZjCOs9Y785sqmKhW_WqKHXqTSpVLrXVx-ggU7nTJ7-zj57G14-jqT-_n8xGw7mf0AgLn4MIYxFRrIM45iyJQhIlJKGUQ5jFIo15FDHGM8zClDCqgUKcZqQRWRNTCdpH593fpcplWZm1qrayUEZOh3PZ3oCKEMIgeMMNe9axZVW81tpt5KqoK9vEk4RTHtCIAGuoQUclVeFcpbPdWwyyrVO2dcpdnY0h6gzvJtfbf2g5vBrf_nl_AOzBeEI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2737439206</pqid></control><display><type>article</type><title>Visualizing In‐Plane Junctions in Nitrogen‐Doped Graphene</title><source>Wiley Blackwell Single Titles</source><creator>Bouatou, Mehdi ; Chacon, Cyril ; Lorentzen, Aleksander Bach ; Ngo, Huu Thoai ; Girard, Yann ; Repain, Vincent ; Bellec, Amandine ; Rousset, Sylvie ; Brandbyge, Mads ; Dappe, Yannick J. ; Lagoute, Jérôme</creator><creatorcontrib>Bouatou, Mehdi ; Chacon, Cyril ; Lorentzen, Aleksander Bach ; Ngo, Huu Thoai ; Girard, Yann ; Repain, Vincent ; Bellec, Amandine ; Rousset, Sylvie ; Brandbyge, Mads ; Dappe, Yannick J. ; Lagoute, Jérôme</creatorcontrib><description>Controlling the spatial distribution of dopants in graphene is the gateway to the realization of graphene‐based electronic components. Here, it is shown that a submonolayer of self‐assembled physisorbed molecules can be used as a resist during a post‐synthesis nitrogen doping process to realize a nanopatterning of nitrogen dopants in graphene. The resulting formation of domains with different nitrogen concentrations allows obtaining n–n’ and p–n junctions in graphene. A scanning tunneling microscopy is used to measure the electronic properties of the junctions at the atomic scale and reveal their intrinsic width that is found to be ≈7 nm corresponding to a sharp junction regime.
Single layer C60 islands are used as a mask during the exposure of graphene to activated nitrogen, allowing the formation of in‐plane junctions separating domains with different levels of doping. Scanning tunneling microscopy is used to measure the structure and electronic properties of the junctions. Sharp junctions are obtained with a typical width of 7 nm.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202208048</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Condensed Matter ; Dopants ; Electronic components ; Graphene ; Materials science ; Nitrogen ; nitrogen dopants ; P-n junctions ; Physics ; Scanning tunneling microscopy ; Spatial distribution</subject><ispartof>Advanced functional materials, 2022-11, Vol.32 (47), p.n/a</ispartof><rights>2022 The Authors. Advanced Functional Materials published by Wiley‐VCH GmbH</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3918-7085b8931e4bb76c9529c2c33705fb8db799667f165d263e030bdf205f6177a83</citedby><cites>FETCH-LOGICAL-c3918-7085b8931e4bb76c9529c2c33705fb8db799667f165d263e030bdf205f6177a83</cites><orcidid>0000-0002-0568-6991 ; 0000-0001-7410-9736 ; 0000-0001-5708-4338</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202208048$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202208048$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,315,781,785,886,1418,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttps://cnrs.hal.science/hal-03850544$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bouatou, Mehdi</creatorcontrib><creatorcontrib>Chacon, Cyril</creatorcontrib><creatorcontrib>Lorentzen, Aleksander Bach</creatorcontrib><creatorcontrib>Ngo, Huu Thoai</creatorcontrib><creatorcontrib>Girard, Yann</creatorcontrib><creatorcontrib>Repain, Vincent</creatorcontrib><creatorcontrib>Bellec, Amandine</creatorcontrib><creatorcontrib>Rousset, Sylvie</creatorcontrib><creatorcontrib>Brandbyge, Mads</creatorcontrib><creatorcontrib>Dappe, Yannick J.</creatorcontrib><creatorcontrib>Lagoute, Jérôme</creatorcontrib><title>Visualizing In‐Plane Junctions in Nitrogen‐Doped Graphene</title><title>Advanced functional materials</title><description>Controlling the spatial distribution of dopants in graphene is the gateway to the realization of graphene‐based electronic components. Here, it is shown that a submonolayer of self‐assembled physisorbed molecules can be used as a resist during a post‐synthesis nitrogen doping process to realize a nanopatterning of nitrogen dopants in graphene. The resulting formation of domains with different nitrogen concentrations allows obtaining n–n’ and p–n junctions in graphene. A scanning tunneling microscopy is used to measure the electronic properties of the junctions at the atomic scale and reveal their intrinsic width that is found to be ≈7 nm corresponding to a sharp junction regime.
Single layer C60 islands are used as a mask during the exposure of graphene to activated nitrogen, allowing the formation of in‐plane junctions separating domains with different levels of doping. Scanning tunneling microscopy is used to measure the structure and electronic properties of the junctions. Sharp junctions are obtained with a typical width of 7 nm.</description><subject>Condensed Matter</subject><subject>Dopants</subject><subject>Electronic components</subject><subject>Graphene</subject><subject>Materials science</subject><subject>Nitrogen</subject><subject>nitrogen dopants</subject><subject>P-n junctions</subject><subject>Physics</subject><subject>Scanning tunneling microscopy</subject><subject>Spatial distribution</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkL1OwzAUhS0EEqWwMkdiYki5thPbGRiqQn9Q-RkAsVlO4rSuUifEDahMPALPyJOQKKiMTPfqnu9cHR2ETjEMMAC5UGm2HhAgBAQEYg_1MMPMp0DE_m7HL4foyLkVAOacBj10-WxcrXLzYezCm9nvz6-HXFnt3dQ22ZjCOs9Y785sqmKhW_WqKHXqTSpVLrXVx-ggU7nTJ7-zj57G14-jqT-_n8xGw7mf0AgLn4MIYxFRrIM45iyJQhIlJKGUQ5jFIo15FDHGM8zClDCqgUKcZqQRWRNTCdpH593fpcplWZm1qrayUEZOh3PZ3oCKEMIgeMMNe9axZVW81tpt5KqoK9vEk4RTHtCIAGuoQUclVeFcpbPdWwyyrVO2dcpdnY0h6gzvJtfbf2g5vBrf_nl_AOzBeEI</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Bouatou, Mehdi</creator><creator>Chacon, Cyril</creator><creator>Lorentzen, Aleksander Bach</creator><creator>Ngo, Huu Thoai</creator><creator>Girard, Yann</creator><creator>Repain, Vincent</creator><creator>Bellec, Amandine</creator><creator>Rousset, Sylvie</creator><creator>Brandbyge, Mads</creator><creator>Dappe, Yannick J.</creator><creator>Lagoute, Jérôme</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-0568-6991</orcidid><orcidid>https://orcid.org/0000-0001-7410-9736</orcidid><orcidid>https://orcid.org/0000-0001-5708-4338</orcidid></search><sort><creationdate>20221101</creationdate><title>Visualizing In‐Plane Junctions in Nitrogen‐Doped Graphene</title><author>Bouatou, Mehdi ; Chacon, Cyril ; Lorentzen, Aleksander Bach ; Ngo, Huu Thoai ; Girard, Yann ; Repain, Vincent ; Bellec, Amandine ; Rousset, Sylvie ; Brandbyge, Mads ; Dappe, Yannick J. ; Lagoute, Jérôme</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3918-7085b8931e4bb76c9529c2c33705fb8db799667f165d263e030bdf205f6177a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Condensed Matter</topic><topic>Dopants</topic><topic>Electronic components</topic><topic>Graphene</topic><topic>Materials science</topic><topic>Nitrogen</topic><topic>nitrogen dopants</topic><topic>P-n junctions</topic><topic>Physics</topic><topic>Scanning tunneling microscopy</topic><topic>Spatial distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bouatou, Mehdi</creatorcontrib><creatorcontrib>Chacon, Cyril</creatorcontrib><creatorcontrib>Lorentzen, Aleksander Bach</creatorcontrib><creatorcontrib>Ngo, Huu Thoai</creatorcontrib><creatorcontrib>Girard, Yann</creatorcontrib><creatorcontrib>Repain, Vincent</creatorcontrib><creatorcontrib>Bellec, Amandine</creatorcontrib><creatorcontrib>Rousset, Sylvie</creatorcontrib><creatorcontrib>Brandbyge, Mads</creatorcontrib><creatorcontrib>Dappe, Yannick J.</creatorcontrib><creatorcontrib>Lagoute, Jérôme</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bouatou, Mehdi</au><au>Chacon, Cyril</au><au>Lorentzen, Aleksander Bach</au><au>Ngo, Huu Thoai</au><au>Girard, Yann</au><au>Repain, Vincent</au><au>Bellec, Amandine</au><au>Rousset, Sylvie</au><au>Brandbyge, Mads</au><au>Dappe, Yannick J.</au><au>Lagoute, Jérôme</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Visualizing In‐Plane Junctions in Nitrogen‐Doped Graphene</atitle><jtitle>Advanced functional materials</jtitle><date>2022-11-01</date><risdate>2022</risdate><volume>32</volume><issue>47</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Controlling the spatial distribution of dopants in graphene is the gateway to the realization of graphene‐based electronic components. Here, it is shown that a submonolayer of self‐assembled physisorbed molecules can be used as a resist during a post‐synthesis nitrogen doping process to realize a nanopatterning of nitrogen dopants in graphene. The resulting formation of domains with different nitrogen concentrations allows obtaining n–n’ and p–n junctions in graphene. A scanning tunneling microscopy is used to measure the electronic properties of the junctions at the atomic scale and reveal their intrinsic width that is found to be ≈7 nm corresponding to a sharp junction regime.
Single layer C60 islands are used as a mask during the exposure of graphene to activated nitrogen, allowing the formation of in‐plane junctions separating domains with different levels of doping. Scanning tunneling microscopy is used to measure the structure and electronic properties of the junctions. Sharp junctions are obtained with a typical width of 7 nm.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202208048</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-0568-6991</orcidid><orcidid>https://orcid.org/0000-0001-7410-9736</orcidid><orcidid>https://orcid.org/0000-0001-5708-4338</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2022-11, Vol.32 (47), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03850544v1 |
source | Wiley Blackwell Single Titles |
subjects | Condensed Matter Dopants Electronic components Graphene Materials science Nitrogen nitrogen dopants P-n junctions Physics Scanning tunneling microscopy Spatial distribution |
title | Visualizing In‐Plane Junctions in Nitrogen‐Doped Graphene |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T16%3A42%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Visualizing%20In%E2%80%90Plane%20Junctions%20in%20Nitrogen%E2%80%90Doped%20Graphene&rft.jtitle=Advanced%20functional%20materials&rft.au=Bouatou,%20Mehdi&rft.date=2022-11-01&rft.volume=32&rft.issue=47&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202208048&rft_dat=%3Cproquest_hal_p%3E2737439206%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2737439206&rft_id=info:pmid/&rfr_iscdi=true |