Estimation of the $l_2$-norm and testing in sparse linear regression with unknown variance

We consider the related problems of estimating the $l_2$-norm and the squared $l_2$-norm in sparse linear regression with unknown variance, as well as the problem of testing the hypothesis that the regression parameter is null under sparse alternatives with $l_2$ separation. We establish the minimax...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability 2022-11
Hauptverfasser: Carpentier, Alexandra, Collier, Olivier, Comminges, Laëtitia, Tsybakov, Alexandre B., Wang, Yuhao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability
container_volume
creator Carpentier, Alexandra
Collier, Olivier
Comminges, Laëtitia
Tsybakov, Alexandre B.
Wang, Yuhao
description We consider the related problems of estimating the $l_2$-norm and the squared $l_2$-norm in sparse linear regression with unknown variance, as well as the problem of testing the hypothesis that the regression parameter is null under sparse alternatives with $l_2$ separation. We establish the minimax optimal rates of estimation (respectively, testing) in these three problems.
doi_str_mv 10.3150/21-BEJ1436
format Article
fullrecord <record><control><sourceid>hal</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03850120v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_03850120v1</sourcerecordid><originalsourceid>FETCH-hal_primary_oai_HAL_hal_03850120v13</originalsourceid><addsrcrecordid>eNqVjb0OAUEURqcg8dt4gltoFMudHbu0yIqIUqWZ3DDssO7IzCDeHokXUJ3ky_lyhOhJHCqZ4SiVybxYy7HKa6IpVYbJJM2zhmiFcEaU4zzHptgVIdorResY3BFiaaBf6bSfsPNXID5ANB-DT2AZwo18MFBZNuTBm5M3IXyfTxtLuPOF3ZPhQd4S701H1I9UBdP9sS0Gy2K7WCUlVfrmP1X_0o6sXs02-ruhmmYoU3xI9Y_7BgvlSWU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Estimation of the $l_2$-norm and testing in sparse linear regression with unknown variance</title><source>Project Euclid Complete</source><creator>Carpentier, Alexandra ; Collier, Olivier ; Comminges, Laëtitia ; Tsybakov, Alexandre B. ; Wang, Yuhao</creator><creatorcontrib>Carpentier, Alexandra ; Collier, Olivier ; Comminges, Laëtitia ; Tsybakov, Alexandre B. ; Wang, Yuhao</creatorcontrib><description>We consider the related problems of estimating the $l_2$-norm and the squared $l_2$-norm in sparse linear regression with unknown variance, as well as the problem of testing the hypothesis that the regression parameter is null under sparse alternatives with $l_2$ separation. We establish the minimax optimal rates of estimation (respectively, testing) in these three problems.</description><identifier>ISSN: 1350-7265</identifier><identifier>DOI: 10.3150/21-BEJ1436</identifier><language>eng</language><publisher>Bernoulli Society for Mathematical Statistics and Probability</publisher><subject>Mathematics ; Statistics</subject><ispartof>Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability, 2022-11</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883,27907,27908</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03850120$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Carpentier, Alexandra</creatorcontrib><creatorcontrib>Collier, Olivier</creatorcontrib><creatorcontrib>Comminges, Laëtitia</creatorcontrib><creatorcontrib>Tsybakov, Alexandre B.</creatorcontrib><creatorcontrib>Wang, Yuhao</creatorcontrib><title>Estimation of the $l_2$-norm and testing in sparse linear regression with unknown variance</title><title>Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability</title><description>We consider the related problems of estimating the $l_2$-norm and the squared $l_2$-norm in sparse linear regression with unknown variance, as well as the problem of testing the hypothesis that the regression parameter is null under sparse alternatives with $l_2$ separation. We establish the minimax optimal rates of estimation (respectively, testing) in these three problems.</description><subject>Mathematics</subject><subject>Statistics</subject><issn>1350-7265</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqVjb0OAUEURqcg8dt4gltoFMudHbu0yIqIUqWZ3DDssO7IzCDeHokXUJ3ky_lyhOhJHCqZ4SiVybxYy7HKa6IpVYbJJM2zhmiFcEaU4zzHptgVIdorResY3BFiaaBf6bSfsPNXID5ANB-DT2AZwo18MFBZNuTBm5M3IXyfTxtLuPOF3ZPhQd4S701H1I9UBdP9sS0Gy2K7WCUlVfrmP1X_0o6sXs02-ruhmmYoU3xI9Y_7BgvlSWU</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Carpentier, Alexandra</creator><creator>Collier, Olivier</creator><creator>Comminges, Laëtitia</creator><creator>Tsybakov, Alexandre B.</creator><creator>Wang, Yuhao</creator><general>Bernoulli Society for Mathematical Statistics and Probability</general><scope>1XC</scope></search><sort><creationdate>20221101</creationdate><title>Estimation of the $l_2$-norm and testing in sparse linear regression with unknown variance</title><author>Carpentier, Alexandra ; Collier, Olivier ; Comminges, Laëtitia ; Tsybakov, Alexandre B. ; Wang, Yuhao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-hal_primary_oai_HAL_hal_03850120v13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Mathematics</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carpentier, Alexandra</creatorcontrib><creatorcontrib>Collier, Olivier</creatorcontrib><creatorcontrib>Comminges, Laëtitia</creatorcontrib><creatorcontrib>Tsybakov, Alexandre B.</creatorcontrib><creatorcontrib>Wang, Yuhao</creatorcontrib><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carpentier, Alexandra</au><au>Collier, Olivier</au><au>Comminges, Laëtitia</au><au>Tsybakov, Alexandre B.</au><au>Wang, Yuhao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of the $l_2$-norm and testing in sparse linear regression with unknown variance</atitle><jtitle>Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability</jtitle><date>2022-11-01</date><risdate>2022</risdate><issn>1350-7265</issn><abstract>We consider the related problems of estimating the $l_2$-norm and the squared $l_2$-norm in sparse linear regression with unknown variance, as well as the problem of testing the hypothesis that the regression parameter is null under sparse alternatives with $l_2$ separation. We establish the minimax optimal rates of estimation (respectively, testing) in these three problems.</abstract><pub>Bernoulli Society for Mathematical Statistics and Probability</pub><doi>10.3150/21-BEJ1436</doi></addata></record>
fulltext fulltext
identifier ISSN: 1350-7265
ispartof Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability, 2022-11
issn 1350-7265
language eng
recordid cdi_hal_primary_oai_HAL_hal_03850120v1
source Project Euclid Complete
subjects Mathematics
Statistics
title Estimation of the $l_2$-norm and testing in sparse linear regression with unknown variance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T11%3A25%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20the%20$l_2$-norm%20and%20testing%20in%20sparse%20linear%20regression%20with%20unknown%20variance&rft.jtitle=Bernoulli%20:%20official%20journal%20of%20the%20Bernoulli%20Society%20for%20Mathematical%20Statistics%20and%20Probability&rft.au=Carpentier,%20Alexandra&rft.date=2022-11-01&rft.issn=1350-7265&rft_id=info:doi/10.3150/21-BEJ1436&rft_dat=%3Chal%3Eoai_HAL_hal_03850120v1%3C/hal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true