Error estimates of a Fourier integrator for the cubic Schrödinger equation at low regularity

We present a new filtered low-regularity Fourier integrator for the cubic nonlinear Schrödinger equation based on recent time discretization and filtering techniques. For this new scheme, we perform a rigorous error analysis and establish better convergence rates at low regularity than known for cla...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Foundations of computational mathematics 2021-06, Vol.21 (3), p.725-765
Hauptverfasser: Ostermann, Alexander, Rousset, Frédéric, Schratz, Katharina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 765
container_issue 3
container_start_page 725
container_title Foundations of computational mathematics
container_volume 21
creator Ostermann, Alexander
Rousset, Frédéric
Schratz, Katharina
description We present a new filtered low-regularity Fourier integrator for the cubic nonlinear Schrödinger equation based on recent time discretization and filtering techniques. For this new scheme, we perform a rigorous error analysis and establish better convergence rates at low regularity than known for classical schemes in the literature so far. In our error estimates, we combine the better local error properties of the new scheme with a stability analysis based on general discrete Strichartz-type estimates. The latter allow us to handle a much rougher class of solutions as the error analysis can be carried out directly at the level of L 2 compared to classical results in dimension d , which are limited to higher-order (sufficiently smooth) Sobolev spaces H s with s > d / 2 . In particular, we are able to establish a global error estimate in L 2 for H 1 solutions which is roughly of order τ 1 2 + 5 - d 12 in dimension d ≤ 3 ( τ denoting the time discretization parameter). This breaks the “natural order barrier” of τ 1 / 2 for H 1 solutions which holds for classical numerical schemes (even in combination with suitable filter functions).
doi_str_mv 10.1007/s10208-020-09468-7
format Article
fullrecord <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03844949v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A666290550</galeid><sourcerecordid>A666290550</sourcerecordid><originalsourceid>FETCH-LOGICAL-c492t-e0e3246dabee0090bcbb643effb2af9f199b7900673380b9b2554391c29c99003</originalsourceid><addsrcrecordid>eNp9kt9qFDEUxgdRsFZfwKuAV72YNv9mZnO5lNYWFgSrlxKS7MlsyuykTTLWvpgv4Iv1rCMtC4uEnITD70vynZyq-sjoKaO0O8uMcrqoMdRUyXZRd6-qI9ayphZiIV4_77vmbfUu51tKWaOYPKp-XKQUE4FcwtYUyCR6YshlnFKARMJYoE-mIOFxlg0QN9ngyI3bpD-_12HskYL7yZQQR2IKGeIDSdBPg0mhPL6v3ngzZPjwbz2uvl9efDu_qldfPl-fL1e1k4qXGigILtu1sQCUKmqdta0U4L3lxivPlLKdorTt0A21yvKmkUIxx5VTmBfH1cl87sYM-i6hlfSoown6arnSuxwVCymVVD8Zsp9m9i7F-wmN61t0O-LzNG-wWFxRKV-o3gygw-hjScZtQ3Z62bYtQk2zu7c-QPUwQjJDHMEHTO_xpwd4HGvYBndQcLInQKbAr9KbKWd9ffN1n-Uz61LMOYF_rgSjetcleu4SjUH_7RLdoUjMoozw7jdfqvEf1RPIvLyb</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2538329044</pqid></control><display><type>article</type><title>Error estimates of a Fourier integrator for the cubic Schrödinger equation at low regularity</title><source>Springer Nature - Complete Springer Journals</source><creator>Ostermann, Alexander ; Rousset, Frédéric ; Schratz, Katharina</creator><creatorcontrib>Ostermann, Alexander ; Rousset, Frédéric ; Schratz, Katharina</creatorcontrib><description>We present a new filtered low-regularity Fourier integrator for the cubic nonlinear Schrödinger equation based on recent time discretization and filtering techniques. For this new scheme, we perform a rigorous error analysis and establish better convergence rates at low regularity than known for classical schemes in the literature so far. In our error estimates, we combine the better local error properties of the new scheme with a stability analysis based on general discrete Strichartz-type estimates. The latter allow us to handle a much rougher class of solutions as the error analysis can be carried out directly at the level of L 2 compared to classical results in dimension d , which are limited to higher-order (sufficiently smooth) Sobolev spaces H s with s &gt; d / 2 . In particular, we are able to establish a global error estimate in L 2 for H 1 solutions which is roughly of order τ 1 2 + 5 - d 12 in dimension d ≤ 3 ( τ denoting the time discretization parameter). This breaks the “natural order barrier” of τ 1 / 2 for H 1 solutions which holds for classical numerical schemes (even in combination with suitable filter functions).</description><identifier>ISSN: 1615-3375</identifier><identifier>EISSN: 1615-3383</identifier><identifier>DOI: 10.1007/s10208-020-09468-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Applications of Mathematics ; Computer Science ; Discretization ; Economics ; Error analysis ; Error analysis (Mathematics) ; Estimates ; Integral equations ; Linear and Multilinear Algebras ; Math Applications in Computer Science ; Mathematical research ; Mathematics ; Mathematics and Statistics ; Matrix Theory ; Numerical Analysis ; Regularity ; Schrodinger equation ; Sobolev space ; Stability analysis</subject><ispartof>Foundations of computational mathematics, 2021-06, Vol.21 (3), p.725-765</ispartof><rights>SFoCM 2020</rights><rights>COPYRIGHT 2021 Springer</rights><rights>SFoCM 2020.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c492t-e0e3246dabee0090bcbb643effb2af9f199b7900673380b9b2554391c29c99003</citedby><cites>FETCH-LOGICAL-c492t-e0e3246dabee0090bcbb643effb2af9f199b7900673380b9b2554391c29c99003</cites><orcidid>0000-0003-0194-2481</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10208-020-09468-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10208-020-09468-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51298</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03844949$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ostermann, Alexander</creatorcontrib><creatorcontrib>Rousset, Frédéric</creatorcontrib><creatorcontrib>Schratz, Katharina</creatorcontrib><title>Error estimates of a Fourier integrator for the cubic Schrödinger equation at low regularity</title><title>Foundations of computational mathematics</title><addtitle>Found Comput Math</addtitle><description>We present a new filtered low-regularity Fourier integrator for the cubic nonlinear Schrödinger equation based on recent time discretization and filtering techniques. For this new scheme, we perform a rigorous error analysis and establish better convergence rates at low regularity than known for classical schemes in the literature so far. In our error estimates, we combine the better local error properties of the new scheme with a stability analysis based on general discrete Strichartz-type estimates. The latter allow us to handle a much rougher class of solutions as the error analysis can be carried out directly at the level of L 2 compared to classical results in dimension d , which are limited to higher-order (sufficiently smooth) Sobolev spaces H s with s &gt; d / 2 . In particular, we are able to establish a global error estimate in L 2 for H 1 solutions which is roughly of order τ 1 2 + 5 - d 12 in dimension d ≤ 3 ( τ denoting the time discretization parameter). This breaks the “natural order barrier” of τ 1 / 2 for H 1 solutions which holds for classical numerical schemes (even in combination with suitable filter functions).</description><subject>Applications of Mathematics</subject><subject>Computer Science</subject><subject>Discretization</subject><subject>Economics</subject><subject>Error analysis</subject><subject>Error analysis (Mathematics)</subject><subject>Estimates</subject><subject>Integral equations</subject><subject>Linear and Multilinear Algebras</subject><subject>Math Applications in Computer Science</subject><subject>Mathematical research</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Matrix Theory</subject><subject>Numerical Analysis</subject><subject>Regularity</subject><subject>Schrodinger equation</subject><subject>Sobolev space</subject><subject>Stability analysis</subject><issn>1615-3375</issn><issn>1615-3383</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kt9qFDEUxgdRsFZfwKuAV72YNv9mZnO5lNYWFgSrlxKS7MlsyuykTTLWvpgv4Iv1rCMtC4uEnITD70vynZyq-sjoKaO0O8uMcrqoMdRUyXZRd6-qI9ayphZiIV4_77vmbfUu51tKWaOYPKp-XKQUE4FcwtYUyCR6YshlnFKARMJYoE-mIOFxlg0QN9ngyI3bpD-_12HskYL7yZQQR2IKGeIDSdBPg0mhPL6v3ngzZPjwbz2uvl9efDu_qldfPl-fL1e1k4qXGigILtu1sQCUKmqdta0U4L3lxivPlLKdorTt0A21yvKmkUIxx5VTmBfH1cl87sYM-i6hlfSoown6arnSuxwVCymVVD8Zsp9m9i7F-wmN61t0O-LzNG-wWFxRKV-o3gygw-hjScZtQ3Z62bYtQk2zu7c-QPUwQjJDHMEHTO_xpwd4HGvYBndQcLInQKbAr9KbKWd9ffN1n-Uz61LMOYF_rgSjetcleu4SjUH_7RLdoUjMoozw7jdfqvEf1RPIvLyb</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Ostermann, Alexander</creator><creator>Rousset, Frédéric</creator><creator>Schratz, Katharina</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-0194-2481</orcidid></search><sort><creationdate>20210601</creationdate><title>Error estimates of a Fourier integrator for the cubic Schrödinger equation at low regularity</title><author>Ostermann, Alexander ; Rousset, Frédéric ; Schratz, Katharina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c492t-e0e3246dabee0090bcbb643effb2af9f199b7900673380b9b2554391c29c99003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applications of Mathematics</topic><topic>Computer Science</topic><topic>Discretization</topic><topic>Economics</topic><topic>Error analysis</topic><topic>Error analysis (Mathematics)</topic><topic>Estimates</topic><topic>Integral equations</topic><topic>Linear and Multilinear Algebras</topic><topic>Math Applications in Computer Science</topic><topic>Mathematical research</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Matrix Theory</topic><topic>Numerical Analysis</topic><topic>Regularity</topic><topic>Schrodinger equation</topic><topic>Sobolev space</topic><topic>Stability analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ostermann, Alexander</creatorcontrib><creatorcontrib>Rousset, Frédéric</creatorcontrib><creatorcontrib>Schratz, Katharina</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Foundations of computational mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ostermann, Alexander</au><au>Rousset, Frédéric</au><au>Schratz, Katharina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Error estimates of a Fourier integrator for the cubic Schrödinger equation at low regularity</atitle><jtitle>Foundations of computational mathematics</jtitle><stitle>Found Comput Math</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>21</volume><issue>3</issue><spage>725</spage><epage>765</epage><pages>725-765</pages><issn>1615-3375</issn><eissn>1615-3383</eissn><abstract>We present a new filtered low-regularity Fourier integrator for the cubic nonlinear Schrödinger equation based on recent time discretization and filtering techniques. For this new scheme, we perform a rigorous error analysis and establish better convergence rates at low regularity than known for classical schemes in the literature so far. In our error estimates, we combine the better local error properties of the new scheme with a stability analysis based on general discrete Strichartz-type estimates. The latter allow us to handle a much rougher class of solutions as the error analysis can be carried out directly at the level of L 2 compared to classical results in dimension d , which are limited to higher-order (sufficiently smooth) Sobolev spaces H s with s &gt; d / 2 . In particular, we are able to establish a global error estimate in L 2 for H 1 solutions which is roughly of order τ 1 2 + 5 - d 12 in dimension d ≤ 3 ( τ denoting the time discretization parameter). This breaks the “natural order barrier” of τ 1 / 2 for H 1 solutions which holds for classical numerical schemes (even in combination with suitable filter functions).</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10208-020-09468-7</doi><tpages>41</tpages><orcidid>https://orcid.org/0000-0003-0194-2481</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1615-3375
ispartof Foundations of computational mathematics, 2021-06, Vol.21 (3), p.725-765
issn 1615-3375
1615-3383
language eng
recordid cdi_hal_primary_oai_HAL_hal_03844949v1
source Springer Nature - Complete Springer Journals
subjects Applications of Mathematics
Computer Science
Discretization
Economics
Error analysis
Error analysis (Mathematics)
Estimates
Integral equations
Linear and Multilinear Algebras
Math Applications in Computer Science
Mathematical research
Mathematics
Mathematics and Statistics
Matrix Theory
Numerical Analysis
Regularity
Schrodinger equation
Sobolev space
Stability analysis
title Error estimates of a Fourier integrator for the cubic Schrödinger equation at low regularity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T09%3A27%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Error%20estimates%20of%20a%20Fourier%20integrator%20for%20the%20cubic%20Schr%C3%B6dinger%20equation%20at%20low%20regularity&rft.jtitle=Foundations%20of%20computational%20mathematics&rft.au=Ostermann,%20Alexander&rft.date=2021-06-01&rft.volume=21&rft.issue=3&rft.spage=725&rft.epage=765&rft.pages=725-765&rft.issn=1615-3375&rft.eissn=1615-3383&rft_id=info:doi/10.1007/s10208-020-09468-7&rft_dat=%3Cgale_hal_p%3EA666290550%3C/gale_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2538329044&rft_id=info:pmid/&rft_galeid=A666290550&rfr_iscdi=true