Error estimates of a Fourier integrator for the cubic Schrödinger equation at low regularity
We present a new filtered low-regularity Fourier integrator for the cubic nonlinear Schrödinger equation based on recent time discretization and filtering techniques. For this new scheme, we perform a rigorous error analysis and establish better convergence rates at low regularity than known for cla...
Gespeichert in:
Veröffentlicht in: | Foundations of computational mathematics 2021-06, Vol.21 (3), p.725-765 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 765 |
---|---|
container_issue | 3 |
container_start_page | 725 |
container_title | Foundations of computational mathematics |
container_volume | 21 |
creator | Ostermann, Alexander Rousset, Frédéric Schratz, Katharina |
description | We present a new filtered low-regularity Fourier integrator for the cubic nonlinear Schrödinger equation based on recent time discretization and filtering techniques. For this new scheme, we perform a rigorous error analysis and establish better convergence rates at low regularity than known for classical schemes in the literature so far. In our error estimates, we combine the better local error properties of the new scheme with a stability analysis based on general discrete Strichartz-type estimates. The latter allow us to handle a much rougher class of solutions as the error analysis can be carried out directly at the level of
L
2
compared to classical results in dimension
d
, which are limited to higher-order (sufficiently smooth) Sobolev spaces
H
s
with
s
>
d
/
2
. In particular, we are able to establish a global error estimate in
L
2
for
H
1
solutions which is roughly of order
τ
1
2
+
5
-
d
12
in dimension
d
≤
3
(
τ
denoting the time discretization parameter). This breaks the “natural order barrier” of
τ
1
/
2
for
H
1
solutions which holds for classical numerical schemes (even in combination with suitable filter functions). |
doi_str_mv | 10.1007/s10208-020-09468-7 |
format | Article |
fullrecord | <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03844949v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A666290550</galeid><sourcerecordid>A666290550</sourcerecordid><originalsourceid>FETCH-LOGICAL-c492t-e0e3246dabee0090bcbb643effb2af9f199b7900673380b9b2554391c29c99003</originalsourceid><addsrcrecordid>eNp9kt9qFDEUxgdRsFZfwKuAV72YNv9mZnO5lNYWFgSrlxKS7MlsyuykTTLWvpgv4Iv1rCMtC4uEnITD70vynZyq-sjoKaO0O8uMcrqoMdRUyXZRd6-qI9ayphZiIV4_77vmbfUu51tKWaOYPKp-XKQUE4FcwtYUyCR6YshlnFKARMJYoE-mIOFxlg0QN9ngyI3bpD-_12HskYL7yZQQR2IKGeIDSdBPg0mhPL6v3ngzZPjwbz2uvl9efDu_qldfPl-fL1e1k4qXGigILtu1sQCUKmqdta0U4L3lxivPlLKdorTt0A21yvKmkUIxx5VTmBfH1cl87sYM-i6hlfSoown6arnSuxwVCymVVD8Zsp9m9i7F-wmN61t0O-LzNG-wWFxRKV-o3gygw-hjScZtQ3Z62bYtQk2zu7c-QPUwQjJDHMEHTO_xpwd4HGvYBndQcLInQKbAr9KbKWd9ffN1n-Uz61LMOYF_rgSjetcleu4SjUH_7RLdoUjMoozw7jdfqvEf1RPIvLyb</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2538329044</pqid></control><display><type>article</type><title>Error estimates of a Fourier integrator for the cubic Schrödinger equation at low regularity</title><source>Springer Nature - Complete Springer Journals</source><creator>Ostermann, Alexander ; Rousset, Frédéric ; Schratz, Katharina</creator><creatorcontrib>Ostermann, Alexander ; Rousset, Frédéric ; Schratz, Katharina</creatorcontrib><description>We present a new filtered low-regularity Fourier integrator for the cubic nonlinear Schrödinger equation based on recent time discretization and filtering techniques. For this new scheme, we perform a rigorous error analysis and establish better convergence rates at low regularity than known for classical schemes in the literature so far. In our error estimates, we combine the better local error properties of the new scheme with a stability analysis based on general discrete Strichartz-type estimates. The latter allow us to handle a much rougher class of solutions as the error analysis can be carried out directly at the level of
L
2
compared to classical results in dimension
d
, which are limited to higher-order (sufficiently smooth) Sobolev spaces
H
s
with
s
>
d
/
2
. In particular, we are able to establish a global error estimate in
L
2
for
H
1
solutions which is roughly of order
τ
1
2
+
5
-
d
12
in dimension
d
≤
3
(
τ
denoting the time discretization parameter). This breaks the “natural order barrier” of
τ
1
/
2
for
H
1
solutions which holds for classical numerical schemes (even in combination with suitable filter functions).</description><identifier>ISSN: 1615-3375</identifier><identifier>EISSN: 1615-3383</identifier><identifier>DOI: 10.1007/s10208-020-09468-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Applications of Mathematics ; Computer Science ; Discretization ; Economics ; Error analysis ; Error analysis (Mathematics) ; Estimates ; Integral equations ; Linear and Multilinear Algebras ; Math Applications in Computer Science ; Mathematical research ; Mathematics ; Mathematics and Statistics ; Matrix Theory ; Numerical Analysis ; Regularity ; Schrodinger equation ; Sobolev space ; Stability analysis</subject><ispartof>Foundations of computational mathematics, 2021-06, Vol.21 (3), p.725-765</ispartof><rights>SFoCM 2020</rights><rights>COPYRIGHT 2021 Springer</rights><rights>SFoCM 2020.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c492t-e0e3246dabee0090bcbb643effb2af9f199b7900673380b9b2554391c29c99003</citedby><cites>FETCH-LOGICAL-c492t-e0e3246dabee0090bcbb643effb2af9f199b7900673380b9b2554391c29c99003</cites><orcidid>0000-0003-0194-2481</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10208-020-09468-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10208-020-09468-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51298</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03844949$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ostermann, Alexander</creatorcontrib><creatorcontrib>Rousset, Frédéric</creatorcontrib><creatorcontrib>Schratz, Katharina</creatorcontrib><title>Error estimates of a Fourier integrator for the cubic Schrödinger equation at low regularity</title><title>Foundations of computational mathematics</title><addtitle>Found Comput Math</addtitle><description>We present a new filtered low-regularity Fourier integrator for the cubic nonlinear Schrödinger equation based on recent time discretization and filtering techniques. For this new scheme, we perform a rigorous error analysis and establish better convergence rates at low regularity than known for classical schemes in the literature so far. In our error estimates, we combine the better local error properties of the new scheme with a stability analysis based on general discrete Strichartz-type estimates. The latter allow us to handle a much rougher class of solutions as the error analysis can be carried out directly at the level of
L
2
compared to classical results in dimension
d
, which are limited to higher-order (sufficiently smooth) Sobolev spaces
H
s
with
s
>
d
/
2
. In particular, we are able to establish a global error estimate in
L
2
for
H
1
solutions which is roughly of order
τ
1
2
+
5
-
d
12
in dimension
d
≤
3
(
τ
denoting the time discretization parameter). This breaks the “natural order barrier” of
τ
1
/
2
for
H
1
solutions which holds for classical numerical schemes (even in combination with suitable filter functions).</description><subject>Applications of Mathematics</subject><subject>Computer Science</subject><subject>Discretization</subject><subject>Economics</subject><subject>Error analysis</subject><subject>Error analysis (Mathematics)</subject><subject>Estimates</subject><subject>Integral equations</subject><subject>Linear and Multilinear Algebras</subject><subject>Math Applications in Computer Science</subject><subject>Mathematical research</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Matrix Theory</subject><subject>Numerical Analysis</subject><subject>Regularity</subject><subject>Schrodinger equation</subject><subject>Sobolev space</subject><subject>Stability analysis</subject><issn>1615-3375</issn><issn>1615-3383</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kt9qFDEUxgdRsFZfwKuAV72YNv9mZnO5lNYWFgSrlxKS7MlsyuykTTLWvpgv4Iv1rCMtC4uEnITD70vynZyq-sjoKaO0O8uMcrqoMdRUyXZRd6-qI9ayphZiIV4_77vmbfUu51tKWaOYPKp-XKQUE4FcwtYUyCR6YshlnFKARMJYoE-mIOFxlg0QN9ngyI3bpD-_12HskYL7yZQQR2IKGeIDSdBPg0mhPL6v3ngzZPjwbz2uvl9efDu_qldfPl-fL1e1k4qXGigILtu1sQCUKmqdta0U4L3lxivPlLKdorTt0A21yvKmkUIxx5VTmBfH1cl87sYM-i6hlfSoown6arnSuxwVCymVVD8Zsp9m9i7F-wmN61t0O-LzNG-wWFxRKV-o3gygw-hjScZtQ3Z62bYtQk2zu7c-QPUwQjJDHMEHTO_xpwd4HGvYBndQcLInQKbAr9KbKWd9ffN1n-Uz61LMOYF_rgSjetcleu4SjUH_7RLdoUjMoozw7jdfqvEf1RPIvLyb</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Ostermann, Alexander</creator><creator>Rousset, Frédéric</creator><creator>Schratz, Katharina</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-0194-2481</orcidid></search><sort><creationdate>20210601</creationdate><title>Error estimates of a Fourier integrator for the cubic Schrödinger equation at low regularity</title><author>Ostermann, Alexander ; Rousset, Frédéric ; Schratz, Katharina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c492t-e0e3246dabee0090bcbb643effb2af9f199b7900673380b9b2554391c29c99003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applications of Mathematics</topic><topic>Computer Science</topic><topic>Discretization</topic><topic>Economics</topic><topic>Error analysis</topic><topic>Error analysis (Mathematics)</topic><topic>Estimates</topic><topic>Integral equations</topic><topic>Linear and Multilinear Algebras</topic><topic>Math Applications in Computer Science</topic><topic>Mathematical research</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Matrix Theory</topic><topic>Numerical Analysis</topic><topic>Regularity</topic><topic>Schrodinger equation</topic><topic>Sobolev space</topic><topic>Stability analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ostermann, Alexander</creatorcontrib><creatorcontrib>Rousset, Frédéric</creatorcontrib><creatorcontrib>Schratz, Katharina</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Foundations of computational mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ostermann, Alexander</au><au>Rousset, Frédéric</au><au>Schratz, Katharina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Error estimates of a Fourier integrator for the cubic Schrödinger equation at low regularity</atitle><jtitle>Foundations of computational mathematics</jtitle><stitle>Found Comput Math</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>21</volume><issue>3</issue><spage>725</spage><epage>765</epage><pages>725-765</pages><issn>1615-3375</issn><eissn>1615-3383</eissn><abstract>We present a new filtered low-regularity Fourier integrator for the cubic nonlinear Schrödinger equation based on recent time discretization and filtering techniques. For this new scheme, we perform a rigorous error analysis and establish better convergence rates at low regularity than known for classical schemes in the literature so far. In our error estimates, we combine the better local error properties of the new scheme with a stability analysis based on general discrete Strichartz-type estimates. The latter allow us to handle a much rougher class of solutions as the error analysis can be carried out directly at the level of
L
2
compared to classical results in dimension
d
, which are limited to higher-order (sufficiently smooth) Sobolev spaces
H
s
with
s
>
d
/
2
. In particular, we are able to establish a global error estimate in
L
2
for
H
1
solutions which is roughly of order
τ
1
2
+
5
-
d
12
in dimension
d
≤
3
(
τ
denoting the time discretization parameter). This breaks the “natural order barrier” of
τ
1
/
2
for
H
1
solutions which holds for classical numerical schemes (even in combination with suitable filter functions).</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10208-020-09468-7</doi><tpages>41</tpages><orcidid>https://orcid.org/0000-0003-0194-2481</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1615-3375 |
ispartof | Foundations of computational mathematics, 2021-06, Vol.21 (3), p.725-765 |
issn | 1615-3375 1615-3383 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03844949v1 |
source | Springer Nature - Complete Springer Journals |
subjects | Applications of Mathematics Computer Science Discretization Economics Error analysis Error analysis (Mathematics) Estimates Integral equations Linear and Multilinear Algebras Math Applications in Computer Science Mathematical research Mathematics Mathematics and Statistics Matrix Theory Numerical Analysis Regularity Schrodinger equation Sobolev space Stability analysis |
title | Error estimates of a Fourier integrator for the cubic Schrödinger equation at low regularity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T09%3A27%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Error%20estimates%20of%20a%20Fourier%20integrator%20for%20the%20cubic%20Schr%C3%B6dinger%20equation%20at%20low%20regularity&rft.jtitle=Foundations%20of%20computational%20mathematics&rft.au=Ostermann,%20Alexander&rft.date=2021-06-01&rft.volume=21&rft.issue=3&rft.spage=725&rft.epage=765&rft.pages=725-765&rft.issn=1615-3375&rft.eissn=1615-3383&rft_id=info:doi/10.1007/s10208-020-09468-7&rft_dat=%3Cgale_hal_p%3EA666290550%3C/gale_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2538329044&rft_id=info:pmid/&rft_galeid=A666290550&rfr_iscdi=true |