Recent Progress in Metal-Catalyzed [2+2+2] Cycloaddition Reactions
Abstract Metal-catalyzed [2+2+2] cycloaddition is a powerful tool that allows rapid construction of functionalized 6-membered carbo- and heterocycles in a single step through an atom-economical process with high functional group tolerance. The reaction is usually regio- and chemoselective although s...
Gespeichert in:
Veröffentlicht in: | Synthesis (Stuttgart) 2021-09, Vol.54 (1), p.4-32 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 32 |
---|---|
container_issue | 1 |
container_start_page | 4 |
container_title | Synthesis (Stuttgart) |
container_volume | 54 |
creator | Matton, Pascal Huvelle, Steve Haddad, Mansour Phansavath, Phannarath Ratovelomanana-Vidal, Virginie |
description | Abstract
Metal-catalyzed [2+2+2] cycloaddition is a powerful tool that allows rapid construction of functionalized 6-membered carbo- and heterocycles in a single step through an atom-economical process with high functional group tolerance. The reaction is usually regio- and chemoselective although selectivity issues can still be challenging for intermolecular reactions involving the cross-[2+2+2] cycloaddition of two or three different alkynes and various strategies have been developed to attain high selectivities. Furthermore, enantioselective [2+2+2] cycloaddition is an efficient means to create central, axial, and planar chirality and a variety of chiral organometallic complexes can be used for asymmetric transition-metal-catalyzed inter- and intramolecular reactions. This review summarizes the recent advances in the field of [2+2+2] cycloaddition.
1 Introduction
2 Formation of Carbocycles
2.1 Intermolecular Reactions
2.1.1 Cyclotrimerization of Alkynes
2.1.2 [2+2+2] Cycloaddition of Two Different Alkynes
2.1.3 [2+2+2] Cycloaddition of Alkynes/Alkenes with Alkenes/Enamides
2.2 Partially Intramolecular [2+2+2] Cycloaddition Reactions
2.2.1 Rhodium-Catalyzed [2+2+2] Cycloaddition
2.2.2 Molybdenum-Catalyzed [2+2+2] Cycloaddition
2.2.3 Cobalt-Catalyzed [2+2+2] Cycloaddition
2.2.4 Ruthenium-Catalyzed [2+2+2] Cycloaddition
2.2.5 Other Metal-Catalyzed [2+2+2] Cycloaddition
2.3 Totally Intramolecular [2+2+2] Cycloaddition Reactions
3 Formation of Heterocycles
3.1 Cycloaddition of Alkynes with Nitriles
3.2 Cycloaddition of 1,6-Diynes with Cyanamides
3.3 Cycloaddition of 1,6-Diynes with Selenocyanates
3.4 Cycloaddition of Imines with Allenes or Alkenes
3.5 Cycloaddition of (Thio)Cyanates and Isocyanates
3.6 Cycloaddition of 1,3,5-Triazines with Allenes
3.7 Cycloaddition of Aldehydes with Enynes or Allenes/Alkenes
3.8 Totally Intramolecular [2+2+2] Cycloaddition Reactions
4 Conclusion |
doi_str_mv | 10.1055/s-0040-1719831 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03843843v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_03843843v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-972935c5c93f66875bd7a9e794cb3ac54e9bde2464866d2fa547a66d558747783</originalsourceid><addsrcrecordid>eNp1UFFLwzAQDqLgnL763FeRzKRJesnjLOqEiTIUBJGQpVfX0bWSVGH-els2fJM77j6O7_vgPkLOOZtwptRVpIxJRjlwowU_ICMuBdCUs9dDMmJMGApa82NyEuOaMQapMCNyvUCPTZc8hfYjYIxJ1SQP2Lma5q6f2x8skrf0sq_3JN_6unVFUXVV2yQLdH4A8ZQcla6OeLbfY_Jye_Ocz-j88e4-n86plxw6aiA1QnnljSizTINaFuAMgpF-KZxXEs2ywFRmUmdZkZZOSXA9UkqDBNBiTC52vitX289QbVzY2tZVdjad2-HGhJZDf_OeO9lxfWhjDFj-CTizQ1o22iEtu0-rF9CdoFtVuEG7br9C03_zH_8XjE1oXA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Recent Progress in Metal-Catalyzed [2+2+2] Cycloaddition Reactions</title><source>Thieme Connect Journals</source><creator>Matton, Pascal ; Huvelle, Steve ; Haddad, Mansour ; Phansavath, Phannarath ; Ratovelomanana-Vidal, Virginie</creator><creatorcontrib>Matton, Pascal ; Huvelle, Steve ; Haddad, Mansour ; Phansavath, Phannarath ; Ratovelomanana-Vidal, Virginie</creatorcontrib><description>Abstract
Metal-catalyzed [2+2+2] cycloaddition is a powerful tool that allows rapid construction of functionalized 6-membered carbo- and heterocycles in a single step through an atom-economical process with high functional group tolerance. The reaction is usually regio- and chemoselective although selectivity issues can still be challenging for intermolecular reactions involving the cross-[2+2+2] cycloaddition of two or three different alkynes and various strategies have been developed to attain high selectivities. Furthermore, enantioselective [2+2+2] cycloaddition is an efficient means to create central, axial, and planar chirality and a variety of chiral organometallic complexes can be used for asymmetric transition-metal-catalyzed inter- and intramolecular reactions. This review summarizes the recent advances in the field of [2+2+2] cycloaddition.
1 Introduction
2 Formation of Carbocycles
2.1 Intermolecular Reactions
2.1.1 Cyclotrimerization of Alkynes
2.1.2 [2+2+2] Cycloaddition of Two Different Alkynes
2.1.3 [2+2+2] Cycloaddition of Alkynes/Alkenes with Alkenes/Enamides
2.2 Partially Intramolecular [2+2+2] Cycloaddition Reactions
2.2.1 Rhodium-Catalyzed [2+2+2] Cycloaddition
2.2.2 Molybdenum-Catalyzed [2+2+2] Cycloaddition
2.2.3 Cobalt-Catalyzed [2+2+2] Cycloaddition
2.2.4 Ruthenium-Catalyzed [2+2+2] Cycloaddition
2.2.5 Other Metal-Catalyzed [2+2+2] Cycloaddition
2.3 Totally Intramolecular [2+2+2] Cycloaddition Reactions
3 Formation of Heterocycles
3.1 Cycloaddition of Alkynes with Nitriles
3.2 Cycloaddition of 1,6-Diynes with Cyanamides
3.3 Cycloaddition of 1,6-Diynes with Selenocyanates
3.4 Cycloaddition of Imines with Allenes or Alkenes
3.5 Cycloaddition of (Thio)Cyanates and Isocyanates
3.6 Cycloaddition of 1,3,5-Triazines with Allenes
3.7 Cycloaddition of Aldehydes with Enynes or Allenes/Alkenes
3.8 Totally Intramolecular [2+2+2] Cycloaddition Reactions
4 Conclusion</description><identifier>ISSN: 0039-7881</identifier><identifier>EISSN: 1437-210X</identifier><identifier>DOI: 10.1055/s-0040-1719831</identifier><language>eng</language><publisher>Rüdigerstraße 14, 70469 Stuttgart, Germany: Georg Thieme Verlag KG</publisher><subject>Chemical Sciences ; review</subject><ispartof>Synthesis (Stuttgart), 2021-09, Vol.54 (1), p.4-32</ispartof><rights>Thieme. All rights reserved</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-972935c5c93f66875bd7a9e794cb3ac54e9bde2464866d2fa547a66d558747783</citedby><cites>FETCH-LOGICAL-c417t-972935c5c93f66875bd7a9e794cb3ac54e9bde2464866d2fa547a66d558747783</cites><orcidid>0000-0003-1167-1195 ; 0000-0002-7854-170X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.thieme-connect.de/products/ejournals/pdf/10.1055/s-0040-1719831.pdf$$EPDF$$P50$$Gthieme$$H</linktopdf><linktohtml>$$Uhttps://www.thieme-connect.de/products/ejournals/html/10.1055/s-0040-1719831$$EHTML$$P50$$Gthieme$$H</linktohtml><link.rule.ids>230,314,780,784,885,3015,3016,27923,27924,54558,54559</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03843843$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Matton, Pascal</creatorcontrib><creatorcontrib>Huvelle, Steve</creatorcontrib><creatorcontrib>Haddad, Mansour</creatorcontrib><creatorcontrib>Phansavath, Phannarath</creatorcontrib><creatorcontrib>Ratovelomanana-Vidal, Virginie</creatorcontrib><title>Recent Progress in Metal-Catalyzed [2+2+2] Cycloaddition Reactions</title><title>Synthesis (Stuttgart)</title><addtitle>Synthesis</addtitle><description>Abstract
Metal-catalyzed [2+2+2] cycloaddition is a powerful tool that allows rapid construction of functionalized 6-membered carbo- and heterocycles in a single step through an atom-economical process with high functional group tolerance. The reaction is usually regio- and chemoselective although selectivity issues can still be challenging for intermolecular reactions involving the cross-[2+2+2] cycloaddition of two or three different alkynes and various strategies have been developed to attain high selectivities. Furthermore, enantioselective [2+2+2] cycloaddition is an efficient means to create central, axial, and planar chirality and a variety of chiral organometallic complexes can be used for asymmetric transition-metal-catalyzed inter- and intramolecular reactions. This review summarizes the recent advances in the field of [2+2+2] cycloaddition.
1 Introduction
2 Formation of Carbocycles
2.1 Intermolecular Reactions
2.1.1 Cyclotrimerization of Alkynes
2.1.2 [2+2+2] Cycloaddition of Two Different Alkynes
2.1.3 [2+2+2] Cycloaddition of Alkynes/Alkenes with Alkenes/Enamides
2.2 Partially Intramolecular [2+2+2] Cycloaddition Reactions
2.2.1 Rhodium-Catalyzed [2+2+2] Cycloaddition
2.2.2 Molybdenum-Catalyzed [2+2+2] Cycloaddition
2.2.3 Cobalt-Catalyzed [2+2+2] Cycloaddition
2.2.4 Ruthenium-Catalyzed [2+2+2] Cycloaddition
2.2.5 Other Metal-Catalyzed [2+2+2] Cycloaddition
2.3 Totally Intramolecular [2+2+2] Cycloaddition Reactions
3 Formation of Heterocycles
3.1 Cycloaddition of Alkynes with Nitriles
3.2 Cycloaddition of 1,6-Diynes with Cyanamides
3.3 Cycloaddition of 1,6-Diynes with Selenocyanates
3.4 Cycloaddition of Imines with Allenes or Alkenes
3.5 Cycloaddition of (Thio)Cyanates and Isocyanates
3.6 Cycloaddition of 1,3,5-Triazines with Allenes
3.7 Cycloaddition of Aldehydes with Enynes or Allenes/Alkenes
3.8 Totally Intramolecular [2+2+2] Cycloaddition Reactions
4 Conclusion</description><subject>Chemical Sciences</subject><subject>review</subject><issn>0039-7881</issn><issn>1437-210X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1UFFLwzAQDqLgnL763FeRzKRJesnjLOqEiTIUBJGQpVfX0bWSVGH-els2fJM77j6O7_vgPkLOOZtwptRVpIxJRjlwowU_ICMuBdCUs9dDMmJMGApa82NyEuOaMQapMCNyvUCPTZc8hfYjYIxJ1SQP2Lma5q6f2x8skrf0sq_3JN_6unVFUXVV2yQLdH4A8ZQcla6OeLbfY_Jye_Ocz-j88e4-n86plxw6aiA1QnnljSizTINaFuAMgpF-KZxXEs2ywFRmUmdZkZZOSXA9UkqDBNBiTC52vitX289QbVzY2tZVdjad2-HGhJZDf_OeO9lxfWhjDFj-CTizQ1o22iEtu0-rF9CdoFtVuEG7br9C03_zH_8XjE1oXA</recordid><startdate>20210927</startdate><enddate>20210927</enddate><creator>Matton, Pascal</creator><creator>Huvelle, Steve</creator><creator>Haddad, Mansour</creator><creator>Phansavath, Phannarath</creator><creator>Ratovelomanana-Vidal, Virginie</creator><general>Georg Thieme Verlag KG</general><general>Georg Thieme Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-1167-1195</orcidid><orcidid>https://orcid.org/0000-0002-7854-170X</orcidid></search><sort><creationdate>20210927</creationdate><title>Recent Progress in Metal-Catalyzed [2+2+2] Cycloaddition Reactions</title><author>Matton, Pascal ; Huvelle, Steve ; Haddad, Mansour ; Phansavath, Phannarath ; Ratovelomanana-Vidal, Virginie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-972935c5c93f66875bd7a9e794cb3ac54e9bde2464866d2fa547a66d558747783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemical Sciences</topic><topic>review</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matton, Pascal</creatorcontrib><creatorcontrib>Huvelle, Steve</creatorcontrib><creatorcontrib>Haddad, Mansour</creatorcontrib><creatorcontrib>Phansavath, Phannarath</creatorcontrib><creatorcontrib>Ratovelomanana-Vidal, Virginie</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Synthesis (Stuttgart)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matton, Pascal</au><au>Huvelle, Steve</au><au>Haddad, Mansour</au><au>Phansavath, Phannarath</au><au>Ratovelomanana-Vidal, Virginie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recent Progress in Metal-Catalyzed [2+2+2] Cycloaddition Reactions</atitle><jtitle>Synthesis (Stuttgart)</jtitle><addtitle>Synthesis</addtitle><date>2021-09-27</date><risdate>2021</risdate><volume>54</volume><issue>1</issue><spage>4</spage><epage>32</epage><pages>4-32</pages><issn>0039-7881</issn><eissn>1437-210X</eissn><abstract>Abstract
Metal-catalyzed [2+2+2] cycloaddition is a powerful tool that allows rapid construction of functionalized 6-membered carbo- and heterocycles in a single step through an atom-economical process with high functional group tolerance. The reaction is usually regio- and chemoselective although selectivity issues can still be challenging for intermolecular reactions involving the cross-[2+2+2] cycloaddition of two or three different alkynes and various strategies have been developed to attain high selectivities. Furthermore, enantioselective [2+2+2] cycloaddition is an efficient means to create central, axial, and planar chirality and a variety of chiral organometallic complexes can be used for asymmetric transition-metal-catalyzed inter- and intramolecular reactions. This review summarizes the recent advances in the field of [2+2+2] cycloaddition.
1 Introduction
2 Formation of Carbocycles
2.1 Intermolecular Reactions
2.1.1 Cyclotrimerization of Alkynes
2.1.2 [2+2+2] Cycloaddition of Two Different Alkynes
2.1.3 [2+2+2] Cycloaddition of Alkynes/Alkenes with Alkenes/Enamides
2.2 Partially Intramolecular [2+2+2] Cycloaddition Reactions
2.2.1 Rhodium-Catalyzed [2+2+2] Cycloaddition
2.2.2 Molybdenum-Catalyzed [2+2+2] Cycloaddition
2.2.3 Cobalt-Catalyzed [2+2+2] Cycloaddition
2.2.4 Ruthenium-Catalyzed [2+2+2] Cycloaddition
2.2.5 Other Metal-Catalyzed [2+2+2] Cycloaddition
2.3 Totally Intramolecular [2+2+2] Cycloaddition Reactions
3 Formation of Heterocycles
3.1 Cycloaddition of Alkynes with Nitriles
3.2 Cycloaddition of 1,6-Diynes with Cyanamides
3.3 Cycloaddition of 1,6-Diynes with Selenocyanates
3.4 Cycloaddition of Imines with Allenes or Alkenes
3.5 Cycloaddition of (Thio)Cyanates and Isocyanates
3.6 Cycloaddition of 1,3,5-Triazines with Allenes
3.7 Cycloaddition of Aldehydes with Enynes or Allenes/Alkenes
3.8 Totally Intramolecular [2+2+2] Cycloaddition Reactions
4 Conclusion</abstract><cop>Rüdigerstraße 14, 70469 Stuttgart, Germany</cop><pub>Georg Thieme Verlag KG</pub><doi>10.1055/s-0040-1719831</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0003-1167-1195</orcidid><orcidid>https://orcid.org/0000-0002-7854-170X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0039-7881 |
ispartof | Synthesis (Stuttgart), 2021-09, Vol.54 (1), p.4-32 |
issn | 0039-7881 1437-210X |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03843843v1 |
source | Thieme Connect Journals |
subjects | Chemical Sciences review |
title | Recent Progress in Metal-Catalyzed [2+2+2] Cycloaddition Reactions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T03%3A01%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recent%20Progress%20in%20Metal-Catalyzed%20%5B2+2+2%5D%20Cycloaddition%20Reactions&rft.jtitle=Synthesis%20(Stuttgart)&rft.au=Matton,%20Pascal&rft.date=2021-09-27&rft.volume=54&rft.issue=1&rft.spage=4&rft.epage=32&rft.pages=4-32&rft.issn=0039-7881&rft.eissn=1437-210X&rft_id=info:doi/10.1055/s-0040-1719831&rft_dat=%3Chal_cross%3Eoai_HAL_hal_03843843v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |