Cyanobacteria Accumulate Radium (226Ra) within Intracellular Amorphous Calcium Carbonate Inclusions

Recently, the cyanobacterium Gleomargarita lithophora was shown to be associated with the capability to strongly accumulate 226Ra (radioactive pollutant) and was suggested as a novel bioremediation strategy for the removal of 226Ra. The bioaccumulation of 226Ra was suggested to be linked with the ab...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS ES&T water 2022-04, Vol.2 (4), p.616-623
Hauptverfasser: Mehta, Neha, Bougoure, Jeremy, Kocar, Benjamin D, Duprat, Elodie, Benzerara, Karim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 623
container_issue 4
container_start_page 616
container_title ACS ES&T water
container_volume 2
creator Mehta, Neha
Bougoure, Jeremy
Kocar, Benjamin D
Duprat, Elodie
Benzerara, Karim
description Recently, the cyanobacterium Gleomargarita lithophora was shown to be associated with the capability to strongly accumulate 226Ra (radioactive pollutant) and was suggested as a novel bioremediation strategy for the removal of 226Ra. The bioaccumulation of 226Ra was suggested to be linked with the ability of G. lithophora to form intracellular amorphous calcium carbonate mineral inclusions (iACC). However, this claim relied on indirect evidence, and the fate of (intracellularly) sequestered 226Ra remains unresolved because of the limited spatial resolution of conventional analytical instrumentation. Here, using high-resolution nanoscale secondary-ion mass spectrometry (NanoSIMS), we show that sequestered 226Ra is primarily associated with iACC and to a lesser degree within polyphosphate inclusions, which are also present in G. lithophora. Moreover, we show that G. lithophora accumulates 226Ra efficiently in the presence of competing cations such as barium and strontium (frequently present in Ra-bearing effluents). Our results offer fundamental insights into the interactions between microorganisms and 226Ra, benefit the future development of efficient 226Ra bioremediation strategies, and present a new frontier in the mapping of ultratrace elements in microbial samples using NanoSIMS.
doi_str_mv 10.1021/acsestwater.1c00473
format Article
fullrecord <record><control><sourceid>acs_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03841088v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c645783995</sourcerecordid><originalsourceid>FETCH-LOGICAL-a323t-56b6d8e162ec40ae160df853051641f44eab0ea8514d3a952b392c5aa7e5ab8a3</originalsourceid><addsrcrecordid>eNp9kMFqwzAQREVpoSHNF_TiY3Nws5IsWzkG0zaBQCG0Z7GWZeJgW0GyG_L3lUkoOfW0w-68gR1Cnim8UmB0gdob35-wN-6VaoAk43dkwtIlxJDy7P5GP5KZ9wcAYFxImskJ0fkZO1ugDnSN0UrroR2akBXtsKyHNnphLN3hPDrV_b7uok3XO9SmaYLJRavWuuPeDj7KsdGjPUdX2G7kN51uBl_bzj-Rhwobb2bXOSXf729f-Trefn5s8tU2Rs54H4u0SEtpaMqMTgCDgLKSgoOgaUKrJDFYgEEpaFJyXApW8CXTAjEzAguJfErml9w9Nuro6hbdWVms1Xq1VeMOuEwoSPlDg5dfvNpZ752p_gAKaqxV3dSqrrUGanGhwlEd7OC68M-_xC_JdX7m</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Cyanobacteria Accumulate Radium (226Ra) within Intracellular Amorphous Calcium Carbonate Inclusions</title><source>American Chemical Society Journals</source><creator>Mehta, Neha ; Bougoure, Jeremy ; Kocar, Benjamin D ; Duprat, Elodie ; Benzerara, Karim</creator><creatorcontrib>Mehta, Neha ; Bougoure, Jeremy ; Kocar, Benjamin D ; Duprat, Elodie ; Benzerara, Karim</creatorcontrib><description>Recently, the cyanobacterium Gleomargarita lithophora was shown to be associated with the capability to strongly accumulate 226Ra (radioactive pollutant) and was suggested as a novel bioremediation strategy for the removal of 226Ra. The bioaccumulation of 226Ra was suggested to be linked with the ability of G. lithophora to form intracellular amorphous calcium carbonate mineral inclusions (iACC). However, this claim relied on indirect evidence, and the fate of (intracellularly) sequestered 226Ra remains unresolved because of the limited spatial resolution of conventional analytical instrumentation. Here, using high-resolution nanoscale secondary-ion mass spectrometry (NanoSIMS), we show that sequestered 226Ra is primarily associated with iACC and to a lesser degree within polyphosphate inclusions, which are also present in G. lithophora. Moreover, we show that G. lithophora accumulates 226Ra efficiently in the presence of competing cations such as barium and strontium (frequently present in Ra-bearing effluents). Our results offer fundamental insights into the interactions between microorganisms and 226Ra, benefit the future development of efficient 226Ra bioremediation strategies, and present a new frontier in the mapping of ultratrace elements in microbial samples using NanoSIMS.</description><identifier>ISSN: 2690-0637</identifier><identifier>EISSN: 2690-0637</identifier><identifier>DOI: 10.1021/acsestwater.1c00473</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Continental interfaces, environment ; Earth Sciences ; Sciences of the Universe</subject><ispartof>ACS ES&amp;T water, 2022-04, Vol.2 (4), p.616-623</ispartof><rights>2022 American Chemical Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a323t-56b6d8e162ec40ae160df853051641f44eab0ea8514d3a952b392c5aa7e5ab8a3</citedby><cites>FETCH-LOGICAL-a323t-56b6d8e162ec40ae160df853051641f44eab0ea8514d3a952b392c5aa7e5ab8a3</cites><orcidid>0000-0002-7312-6398 ; 0000-0002-2692-2236 ; 0000-0002-0553-0137</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsestwater.1c00473$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsestwater.1c00473$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03841088$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Mehta, Neha</creatorcontrib><creatorcontrib>Bougoure, Jeremy</creatorcontrib><creatorcontrib>Kocar, Benjamin D</creatorcontrib><creatorcontrib>Duprat, Elodie</creatorcontrib><creatorcontrib>Benzerara, Karim</creatorcontrib><title>Cyanobacteria Accumulate Radium (226Ra) within Intracellular Amorphous Calcium Carbonate Inclusions</title><title>ACS ES&amp;T water</title><addtitle>ACS EST Water</addtitle><description>Recently, the cyanobacterium Gleomargarita lithophora was shown to be associated with the capability to strongly accumulate 226Ra (radioactive pollutant) and was suggested as a novel bioremediation strategy for the removal of 226Ra. The bioaccumulation of 226Ra was suggested to be linked with the ability of G. lithophora to form intracellular amorphous calcium carbonate mineral inclusions (iACC). However, this claim relied on indirect evidence, and the fate of (intracellularly) sequestered 226Ra remains unresolved because of the limited spatial resolution of conventional analytical instrumentation. Here, using high-resolution nanoscale secondary-ion mass spectrometry (NanoSIMS), we show that sequestered 226Ra is primarily associated with iACC and to a lesser degree within polyphosphate inclusions, which are also present in G. lithophora. Moreover, we show that G. lithophora accumulates 226Ra efficiently in the presence of competing cations such as barium and strontium (frequently present in Ra-bearing effluents). Our results offer fundamental insights into the interactions between microorganisms and 226Ra, benefit the future development of efficient 226Ra bioremediation strategies, and present a new frontier in the mapping of ultratrace elements in microbial samples using NanoSIMS.</description><subject>Continental interfaces, environment</subject><subject>Earth Sciences</subject><subject>Sciences of the Universe</subject><issn>2690-0637</issn><issn>2690-0637</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMFqwzAQREVpoSHNF_TiY3Nws5IsWzkG0zaBQCG0Z7GWZeJgW0GyG_L3lUkoOfW0w-68gR1Cnim8UmB0gdob35-wN-6VaoAk43dkwtIlxJDy7P5GP5KZ9wcAYFxImskJ0fkZO1ugDnSN0UrroR2akBXtsKyHNnphLN3hPDrV_b7uok3XO9SmaYLJRavWuuPeDj7KsdGjPUdX2G7kN51uBl_bzj-Rhwobb2bXOSXf729f-Trefn5s8tU2Rs54H4u0SEtpaMqMTgCDgLKSgoOgaUKrJDFYgEEpaFJyXApW8CXTAjEzAguJfErml9w9Nuro6hbdWVms1Xq1VeMOuEwoSPlDg5dfvNpZ752p_gAKaqxV3dSqrrUGanGhwlEd7OC68M-_xC_JdX7m</recordid><startdate>20220408</startdate><enddate>20220408</enddate><creator>Mehta, Neha</creator><creator>Bougoure, Jeremy</creator><creator>Kocar, Benjamin D</creator><creator>Duprat, Elodie</creator><creator>Benzerara, Karim</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-7312-6398</orcidid><orcidid>https://orcid.org/0000-0002-2692-2236</orcidid><orcidid>https://orcid.org/0000-0002-0553-0137</orcidid></search><sort><creationdate>20220408</creationdate><title>Cyanobacteria Accumulate Radium (226Ra) within Intracellular Amorphous Calcium Carbonate Inclusions</title><author>Mehta, Neha ; Bougoure, Jeremy ; Kocar, Benjamin D ; Duprat, Elodie ; Benzerara, Karim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a323t-56b6d8e162ec40ae160df853051641f44eab0ea8514d3a952b392c5aa7e5ab8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Continental interfaces, environment</topic><topic>Earth Sciences</topic><topic>Sciences of the Universe</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mehta, Neha</creatorcontrib><creatorcontrib>Bougoure, Jeremy</creatorcontrib><creatorcontrib>Kocar, Benjamin D</creatorcontrib><creatorcontrib>Duprat, Elodie</creatorcontrib><creatorcontrib>Benzerara, Karim</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>ACS ES&amp;T water</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mehta, Neha</au><au>Bougoure, Jeremy</au><au>Kocar, Benjamin D</au><au>Duprat, Elodie</au><au>Benzerara, Karim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cyanobacteria Accumulate Radium (226Ra) within Intracellular Amorphous Calcium Carbonate Inclusions</atitle><jtitle>ACS ES&amp;T water</jtitle><addtitle>ACS EST Water</addtitle><date>2022-04-08</date><risdate>2022</risdate><volume>2</volume><issue>4</issue><spage>616</spage><epage>623</epage><pages>616-623</pages><issn>2690-0637</issn><eissn>2690-0637</eissn><abstract>Recently, the cyanobacterium Gleomargarita lithophora was shown to be associated with the capability to strongly accumulate 226Ra (radioactive pollutant) and was suggested as a novel bioremediation strategy for the removal of 226Ra. The bioaccumulation of 226Ra was suggested to be linked with the ability of G. lithophora to form intracellular amorphous calcium carbonate mineral inclusions (iACC). However, this claim relied on indirect evidence, and the fate of (intracellularly) sequestered 226Ra remains unresolved because of the limited spatial resolution of conventional analytical instrumentation. Here, using high-resolution nanoscale secondary-ion mass spectrometry (NanoSIMS), we show that sequestered 226Ra is primarily associated with iACC and to a lesser degree within polyphosphate inclusions, which are also present in G. lithophora. Moreover, we show that G. lithophora accumulates 226Ra efficiently in the presence of competing cations such as barium and strontium (frequently present in Ra-bearing effluents). Our results offer fundamental insights into the interactions between microorganisms and 226Ra, benefit the future development of efficient 226Ra bioremediation strategies, and present a new frontier in the mapping of ultratrace elements in microbial samples using NanoSIMS.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsestwater.1c00473</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-7312-6398</orcidid><orcidid>https://orcid.org/0000-0002-2692-2236</orcidid><orcidid>https://orcid.org/0000-0002-0553-0137</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2690-0637
ispartof ACS ES&T water, 2022-04, Vol.2 (4), p.616-623
issn 2690-0637
2690-0637
language eng
recordid cdi_hal_primary_oai_HAL_hal_03841088v1
source American Chemical Society Journals
subjects Continental interfaces, environment
Earth Sciences
Sciences of the Universe
title Cyanobacteria Accumulate Radium (226Ra) within Intracellular Amorphous Calcium Carbonate Inclusions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T17%3A51%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cyanobacteria%20Accumulate%20Radium%20(226Ra)%20within%20Intracellular%20Amorphous%20Calcium%20Carbonate%20Inclusions&rft.jtitle=ACS%20ES&T%20water&rft.au=Mehta,%20Neha&rft.date=2022-04-08&rft.volume=2&rft.issue=4&rft.spage=616&rft.epage=623&rft.pages=616-623&rft.issn=2690-0637&rft.eissn=2690-0637&rft_id=info:doi/10.1021/acsestwater.1c00473&rft_dat=%3Cacs_hal_p%3Ec645783995%3C/acs_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true