Elucidating Postprogramming Relaxation in Multilevel Cell‐Resistive Random Access Memory by Means of Experimental and Kinetic Monte Carlo Simulation Data
This work explores the phenomenon of HfO2 resistive random access memory (RRAM) postprogramming resistance relaxation using experimental data and kinetic Monte Carlo (KMC) physical simulation. This issue has become an important limitation for multilevel cell (MLC) applications. The physical KMC simu...
Gespeichert in:
Veröffentlicht in: | Physica status solidi. A, Applications and materials science Applications and materials science, 2022-07, Vol.219 (13), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 13 |
container_start_page | |
container_title | Physica status solidi. A, Applications and materials science |
container_volume | 219 |
creator | Reganaz, Lucas Esmanhotto, Eduardo Ait Abdelkader, Nazim Minguet Lopez, Joel Castellani, Niccolo Rafhay, Quentin Deleruyelle, Damien Grenouillet, Laurent Aussenac, Francois Vianello, Elisa Andrieu, François Molas, Gabriel |
description | This work explores the phenomenon of HfO2 resistive random access memory (RRAM) postprogramming resistance relaxation using experimental data and kinetic Monte Carlo (KMC) physical simulation. This issue has become an important limitation for multilevel cell (MLC) applications. The physical KMC simulation replicates the RRAM cell‐to‐cell intrinsic resistance variability due to the conductive filament (CF) morphology fluctuations and the weak correlation between the number of oxygen vacancies and the resulting resistance. It furthermore accurately simulates the vacancies’ microscopic dynamics within the CF that are responsible for the RRAM resistance relaxation. A link between programming current, CF size/configuration, and relaxation amplitude is clarified and shows the ensuing benefits and limitations of smart programming techniques (read & verify) for MLC applications. Coupled with experimental data obtained on HfO2‐based RRAM arrays, this simulation paves the way to a better understanding of the physics at stake in the RRAM relaxation process and provides guidelines to potential technological solutions for MLC reliability prediction.
This work explores the physical phenomenon behind the HfO2‐based resistive random access memory (RRAM) resistance relaxation and its impact on multilevel cell applications through experimental measurements and kinetic Monte Carlo simulations. From the microscopic dynamics at work in the RRAM, guidelines to overcome the relaxation phenomenon are drawn at the scale of programming, material engineering, and device architecture. |
doi_str_mv | 10.1002/pssa.202100753 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03840622v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2685976099</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3063-425757f5729aa4f427081774bc9d30c5fc193c06e5100cb6b7333659e4b922003</originalsourceid><addsrcrecordid>eNqFkcFuEzEQhleISpSWK2dLnDgkjO21HR-jECgiUasEzpbX8RZXXjusvaG58QjceTueBEeL0iMnz9jfPx79f1W9xjDFAOTdPiU9JUBKIxh9Vl3iGScTTrF8fq4BXlQvU3oAqFkt8GX1e-kH43Y6u3CP7mLK-z7e97rrTv3Gev1YnmJALqD14LPz9mA9Wljv__z8tbHJpewOFm102MUOzY2xKaG17WJ_RM2xVDokFFu0fNzb3nU2ZO1RgdFnF2x2Bq1jyBYtdO8j2rpu8ON_73XW19VFq32yr_6dV9XXD8svi5vJ6vbjp8V8NTEUOJ3UhAkmWiaI1LpuayJghoWoGyN3FAxrDZbUALesOGMa3ghKKWfS1o0kBIBeVW_Hud-0V_uype6PKmqnbuYrdboDOquBE3LAhX0zssWn74NNWT3EoQ9lPUX4jEnBQcpCTUfK9DGl3rbnsRjUKSx1CkudwyoCOQp-FIeP_6HV3XY7f9L-BbghmkE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2685976099</pqid></control><display><type>article</type><title>Elucidating Postprogramming Relaxation in Multilevel Cell‐Resistive Random Access Memory by Means of Experimental and Kinetic Monte Carlo Simulation Data</title><source>Wiley Blackwell Single Titles</source><creator>Reganaz, Lucas ; Esmanhotto, Eduardo ; Ait Abdelkader, Nazim ; Minguet Lopez, Joel ; Castellani, Niccolo ; Rafhay, Quentin ; Deleruyelle, Damien ; Grenouillet, Laurent ; Aussenac, Francois ; Vianello, Elisa ; Andrieu, François ; Molas, Gabriel</creator><creatorcontrib>Reganaz, Lucas ; Esmanhotto, Eduardo ; Ait Abdelkader, Nazim ; Minguet Lopez, Joel ; Castellani, Niccolo ; Rafhay, Quentin ; Deleruyelle, Damien ; Grenouillet, Laurent ; Aussenac, Francois ; Vianello, Elisa ; Andrieu, François ; Molas, Gabriel</creatorcontrib><description>This work explores the phenomenon of HfO2 resistive random access memory (RRAM) postprogramming resistance relaxation using experimental data and kinetic Monte Carlo (KMC) physical simulation. This issue has become an important limitation for multilevel cell (MLC) applications. The physical KMC simulation replicates the RRAM cell‐to‐cell intrinsic resistance variability due to the conductive filament (CF) morphology fluctuations and the weak correlation between the number of oxygen vacancies and the resulting resistance. It furthermore accurately simulates the vacancies’ microscopic dynamics within the CF that are responsible for the RRAM resistance relaxation. A link between programming current, CF size/configuration, and relaxation amplitude is clarified and shows the ensuing benefits and limitations of smart programming techniques (read & verify) for MLC applications. Coupled with experimental data obtained on HfO2‐based RRAM arrays, this simulation paves the way to a better understanding of the physics at stake in the RRAM relaxation process and provides guidelines to potential technological solutions for MLC reliability prediction.
This work explores the physical phenomenon behind the HfO2‐based resistive random access memory (RRAM) resistance relaxation and its impact on multilevel cell applications through experimental measurements and kinetic Monte Carlo simulations. From the microscopic dynamics at work in the RRAM, guidelines to overcome the relaxation phenomenon are drawn at the scale of programming, material engineering, and device architecture.</description><identifier>ISSN: 1862-6300</identifier><identifier>EISSN: 1862-6319</identifier><identifier>DOI: 10.1002/pssa.202100753</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Engineering Sciences ; Hafnium oxide ; kinetic Monte Carlo simulations ; Monte Carlo simulation ; multilevel cells ; OxRAM ; Physical simulation ; Random access memory ; relaxation ; resistive random access memory ; Vacancies</subject><ispartof>Physica status solidi. A, Applications and materials science, 2022-07, Vol.219 (13), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3063-425757f5729aa4f427081774bc9d30c5fc193c06e5100cb6b7333659e4b922003</cites><orcidid>0000-0002-2689-0684 ; 0000-0003-2394-1359</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssa.202100753$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssa.202100753$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03840622$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Reganaz, Lucas</creatorcontrib><creatorcontrib>Esmanhotto, Eduardo</creatorcontrib><creatorcontrib>Ait Abdelkader, Nazim</creatorcontrib><creatorcontrib>Minguet Lopez, Joel</creatorcontrib><creatorcontrib>Castellani, Niccolo</creatorcontrib><creatorcontrib>Rafhay, Quentin</creatorcontrib><creatorcontrib>Deleruyelle, Damien</creatorcontrib><creatorcontrib>Grenouillet, Laurent</creatorcontrib><creatorcontrib>Aussenac, Francois</creatorcontrib><creatorcontrib>Vianello, Elisa</creatorcontrib><creatorcontrib>Andrieu, François</creatorcontrib><creatorcontrib>Molas, Gabriel</creatorcontrib><title>Elucidating Postprogramming Relaxation in Multilevel Cell‐Resistive Random Access Memory by Means of Experimental and Kinetic Monte Carlo Simulation Data</title><title>Physica status solidi. A, Applications and materials science</title><description>This work explores the phenomenon of HfO2 resistive random access memory (RRAM) postprogramming resistance relaxation using experimental data and kinetic Monte Carlo (KMC) physical simulation. This issue has become an important limitation for multilevel cell (MLC) applications. The physical KMC simulation replicates the RRAM cell‐to‐cell intrinsic resistance variability due to the conductive filament (CF) morphology fluctuations and the weak correlation between the number of oxygen vacancies and the resulting resistance. It furthermore accurately simulates the vacancies’ microscopic dynamics within the CF that are responsible for the RRAM resistance relaxation. A link between programming current, CF size/configuration, and relaxation amplitude is clarified and shows the ensuing benefits and limitations of smart programming techniques (read & verify) for MLC applications. Coupled with experimental data obtained on HfO2‐based RRAM arrays, this simulation paves the way to a better understanding of the physics at stake in the RRAM relaxation process and provides guidelines to potential technological solutions for MLC reliability prediction.
This work explores the physical phenomenon behind the HfO2‐based resistive random access memory (RRAM) resistance relaxation and its impact on multilevel cell applications through experimental measurements and kinetic Monte Carlo simulations. From the microscopic dynamics at work in the RRAM, guidelines to overcome the relaxation phenomenon are drawn at the scale of programming, material engineering, and device architecture.</description><subject>Engineering Sciences</subject><subject>Hafnium oxide</subject><subject>kinetic Monte Carlo simulations</subject><subject>Monte Carlo simulation</subject><subject>multilevel cells</subject><subject>OxRAM</subject><subject>Physical simulation</subject><subject>Random access memory</subject><subject>relaxation</subject><subject>resistive random access memory</subject><subject>Vacancies</subject><issn>1862-6300</issn><issn>1862-6319</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkcFuEzEQhleISpSWK2dLnDgkjO21HR-jECgiUasEzpbX8RZXXjusvaG58QjceTueBEeL0iMnz9jfPx79f1W9xjDFAOTdPiU9JUBKIxh9Vl3iGScTTrF8fq4BXlQvU3oAqFkt8GX1e-kH43Y6u3CP7mLK-z7e97rrTv3Gev1YnmJALqD14LPz9mA9Wljv__z8tbHJpewOFm102MUOzY2xKaG17WJ_RM2xVDokFFu0fNzb3nU2ZO1RgdFnF2x2Bq1jyBYtdO8j2rpu8ON_73XW19VFq32yr_6dV9XXD8svi5vJ6vbjp8V8NTEUOJ3UhAkmWiaI1LpuayJghoWoGyN3FAxrDZbUALesOGMa3ghKKWfS1o0kBIBeVW_Hud-0V_uype6PKmqnbuYrdboDOquBE3LAhX0zssWn74NNWT3EoQ9lPUX4jEnBQcpCTUfK9DGl3rbnsRjUKSx1CkudwyoCOQp-FIeP_6HV3XY7f9L-BbghmkE</recordid><startdate>202207</startdate><enddate>202207</enddate><creator>Reganaz, Lucas</creator><creator>Esmanhotto, Eduardo</creator><creator>Ait Abdelkader, Nazim</creator><creator>Minguet Lopez, Joel</creator><creator>Castellani, Niccolo</creator><creator>Rafhay, Quentin</creator><creator>Deleruyelle, Damien</creator><creator>Grenouillet, Laurent</creator><creator>Aussenac, Francois</creator><creator>Vianello, Elisa</creator><creator>Andrieu, François</creator><creator>Molas, Gabriel</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-2689-0684</orcidid><orcidid>https://orcid.org/0000-0003-2394-1359</orcidid></search><sort><creationdate>202207</creationdate><title>Elucidating Postprogramming Relaxation in Multilevel Cell‐Resistive Random Access Memory by Means of Experimental and Kinetic Monte Carlo Simulation Data</title><author>Reganaz, Lucas ; Esmanhotto, Eduardo ; Ait Abdelkader, Nazim ; Minguet Lopez, Joel ; Castellani, Niccolo ; Rafhay, Quentin ; Deleruyelle, Damien ; Grenouillet, Laurent ; Aussenac, Francois ; Vianello, Elisa ; Andrieu, François ; Molas, Gabriel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3063-425757f5729aa4f427081774bc9d30c5fc193c06e5100cb6b7333659e4b922003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Engineering Sciences</topic><topic>Hafnium oxide</topic><topic>kinetic Monte Carlo simulations</topic><topic>Monte Carlo simulation</topic><topic>multilevel cells</topic><topic>OxRAM</topic><topic>Physical simulation</topic><topic>Random access memory</topic><topic>relaxation</topic><topic>resistive random access memory</topic><topic>Vacancies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reganaz, Lucas</creatorcontrib><creatorcontrib>Esmanhotto, Eduardo</creatorcontrib><creatorcontrib>Ait Abdelkader, Nazim</creatorcontrib><creatorcontrib>Minguet Lopez, Joel</creatorcontrib><creatorcontrib>Castellani, Niccolo</creatorcontrib><creatorcontrib>Rafhay, Quentin</creatorcontrib><creatorcontrib>Deleruyelle, Damien</creatorcontrib><creatorcontrib>Grenouillet, Laurent</creatorcontrib><creatorcontrib>Aussenac, Francois</creatorcontrib><creatorcontrib>Vianello, Elisa</creatorcontrib><creatorcontrib>Andrieu, François</creatorcontrib><creatorcontrib>Molas, Gabriel</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Physica status solidi. A, Applications and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reganaz, Lucas</au><au>Esmanhotto, Eduardo</au><au>Ait Abdelkader, Nazim</au><au>Minguet Lopez, Joel</au><au>Castellani, Niccolo</au><au>Rafhay, Quentin</au><au>Deleruyelle, Damien</au><au>Grenouillet, Laurent</au><au>Aussenac, Francois</au><au>Vianello, Elisa</au><au>Andrieu, François</au><au>Molas, Gabriel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elucidating Postprogramming Relaxation in Multilevel Cell‐Resistive Random Access Memory by Means of Experimental and Kinetic Monte Carlo Simulation Data</atitle><jtitle>Physica status solidi. A, Applications and materials science</jtitle><date>2022-07</date><risdate>2022</risdate><volume>219</volume><issue>13</issue><epage>n/a</epage><issn>1862-6300</issn><eissn>1862-6319</eissn><abstract>This work explores the phenomenon of HfO2 resistive random access memory (RRAM) postprogramming resistance relaxation using experimental data and kinetic Monte Carlo (KMC) physical simulation. This issue has become an important limitation for multilevel cell (MLC) applications. The physical KMC simulation replicates the RRAM cell‐to‐cell intrinsic resistance variability due to the conductive filament (CF) morphology fluctuations and the weak correlation between the number of oxygen vacancies and the resulting resistance. It furthermore accurately simulates the vacancies’ microscopic dynamics within the CF that are responsible for the RRAM resistance relaxation. A link between programming current, CF size/configuration, and relaxation amplitude is clarified and shows the ensuing benefits and limitations of smart programming techniques (read & verify) for MLC applications. Coupled with experimental data obtained on HfO2‐based RRAM arrays, this simulation paves the way to a better understanding of the physics at stake in the RRAM relaxation process and provides guidelines to potential technological solutions for MLC reliability prediction.
This work explores the physical phenomenon behind the HfO2‐based resistive random access memory (RRAM) resistance relaxation and its impact on multilevel cell applications through experimental measurements and kinetic Monte Carlo simulations. From the microscopic dynamics at work in the RRAM, guidelines to overcome the relaxation phenomenon are drawn at the scale of programming, material engineering, and device architecture.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/pssa.202100753</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2689-0684</orcidid><orcidid>https://orcid.org/0000-0003-2394-1359</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1862-6300 |
ispartof | Physica status solidi. A, Applications and materials science, 2022-07, Vol.219 (13), p.n/a |
issn | 1862-6300 1862-6319 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03840622v1 |
source | Wiley Blackwell Single Titles |
subjects | Engineering Sciences Hafnium oxide kinetic Monte Carlo simulations Monte Carlo simulation multilevel cells OxRAM Physical simulation Random access memory relaxation resistive random access memory Vacancies |
title | Elucidating Postprogramming Relaxation in Multilevel Cell‐Resistive Random Access Memory by Means of Experimental and Kinetic Monte Carlo Simulation Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T15%3A17%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elucidating%20Postprogramming%20Relaxation%20in%20Multilevel%20Cell%E2%80%90Resistive%20Random%20Access%20Memory%20by%20Means%20of%20Experimental%20and%20Kinetic%20Monte%20Carlo%20Simulation%20Data&rft.jtitle=Physica%20status%20solidi.%20A,%20Applications%20and%20materials%20science&rft.au=Reganaz,%20Lucas&rft.date=2022-07&rft.volume=219&rft.issue=13&rft.epage=n/a&rft.issn=1862-6300&rft.eissn=1862-6319&rft_id=info:doi/10.1002/pssa.202100753&rft_dat=%3Cproquest_hal_p%3E2685976099%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2685976099&rft_id=info:pmid/&rfr_iscdi=true |