Elucidating Postprogramming Relaxation in Multilevel Cell‐Resistive Random Access Memory by Means of Experimental and Kinetic Monte Carlo Simulation Data

This work explores the phenomenon of HfO2 resistive random access memory (RRAM) postprogramming resistance relaxation using experimental data and kinetic Monte Carlo (KMC) physical simulation. This issue has become an important limitation for multilevel cell (MLC) applications. The physical KMC simu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica status solidi. A, Applications and materials science Applications and materials science, 2022-07, Vol.219 (13), p.n/a
Hauptverfasser: Reganaz, Lucas, Esmanhotto, Eduardo, Ait Abdelkader, Nazim, Minguet Lopez, Joel, Castellani, Niccolo, Rafhay, Quentin, Deleruyelle, Damien, Grenouillet, Laurent, Aussenac, Francois, Vianello, Elisa, Andrieu, François, Molas, Gabriel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 13
container_start_page
container_title Physica status solidi. A, Applications and materials science
container_volume 219
creator Reganaz, Lucas
Esmanhotto, Eduardo
Ait Abdelkader, Nazim
Minguet Lopez, Joel
Castellani, Niccolo
Rafhay, Quentin
Deleruyelle, Damien
Grenouillet, Laurent
Aussenac, Francois
Vianello, Elisa
Andrieu, François
Molas, Gabriel
description This work explores the phenomenon of HfO2 resistive random access memory (RRAM) postprogramming resistance relaxation using experimental data and kinetic Monte Carlo (KMC) physical simulation. This issue has become an important limitation for multilevel cell (MLC) applications. The physical KMC simulation replicates the RRAM cell‐to‐cell intrinsic resistance variability due to the conductive filament (CF) morphology fluctuations and the weak correlation between the number of oxygen vacancies and the resulting resistance. It furthermore accurately simulates the vacancies’ microscopic dynamics within the CF that are responsible for the RRAM resistance relaxation. A link between programming current, CF size/configuration, and relaxation amplitude is clarified and shows the ensuing benefits and limitations of smart programming techniques (read & verify) for MLC applications. Coupled with experimental data obtained on HfO2‐based RRAM arrays, this simulation paves the way to a better understanding of the physics at stake in the RRAM relaxation process and provides guidelines to potential technological solutions for MLC reliability prediction. This work explores the physical phenomenon behind the HfO2‐based resistive random access memory (RRAM) resistance relaxation and its impact on multilevel cell applications through experimental measurements and kinetic Monte Carlo simulations. From the microscopic dynamics at work in the RRAM, guidelines to overcome the relaxation phenomenon are drawn at the scale of programming, material engineering, and device architecture.
doi_str_mv 10.1002/pssa.202100753
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03840622v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2685976099</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3063-425757f5729aa4f427081774bc9d30c5fc193c06e5100cb6b7333659e4b922003</originalsourceid><addsrcrecordid>eNqFkcFuEzEQhleISpSWK2dLnDgkjO21HR-jECgiUasEzpbX8RZXXjusvaG58QjceTueBEeL0iMnz9jfPx79f1W9xjDFAOTdPiU9JUBKIxh9Vl3iGScTTrF8fq4BXlQvU3oAqFkt8GX1e-kH43Y6u3CP7mLK-z7e97rrTv3Gev1YnmJALqD14LPz9mA9Wljv__z8tbHJpewOFm102MUOzY2xKaG17WJ_RM2xVDokFFu0fNzb3nU2ZO1RgdFnF2x2Bq1jyBYtdO8j2rpu8ON_73XW19VFq32yr_6dV9XXD8svi5vJ6vbjp8V8NTEUOJ3UhAkmWiaI1LpuayJghoWoGyN3FAxrDZbUALesOGMa3ghKKWfS1o0kBIBeVW_Hud-0V_uype6PKmqnbuYrdboDOquBE3LAhX0zssWn74NNWT3EoQ9lPUX4jEnBQcpCTUfK9DGl3rbnsRjUKSx1CkudwyoCOQp-FIeP_6HV3XY7f9L-BbghmkE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2685976099</pqid></control><display><type>article</type><title>Elucidating Postprogramming Relaxation in Multilevel Cell‐Resistive Random Access Memory by Means of Experimental and Kinetic Monte Carlo Simulation Data</title><source>Wiley Blackwell Single Titles</source><creator>Reganaz, Lucas ; Esmanhotto, Eduardo ; Ait Abdelkader, Nazim ; Minguet Lopez, Joel ; Castellani, Niccolo ; Rafhay, Quentin ; Deleruyelle, Damien ; Grenouillet, Laurent ; Aussenac, Francois ; Vianello, Elisa ; Andrieu, François ; Molas, Gabriel</creator><creatorcontrib>Reganaz, Lucas ; Esmanhotto, Eduardo ; Ait Abdelkader, Nazim ; Minguet Lopez, Joel ; Castellani, Niccolo ; Rafhay, Quentin ; Deleruyelle, Damien ; Grenouillet, Laurent ; Aussenac, Francois ; Vianello, Elisa ; Andrieu, François ; Molas, Gabriel</creatorcontrib><description>This work explores the phenomenon of HfO2 resistive random access memory (RRAM) postprogramming resistance relaxation using experimental data and kinetic Monte Carlo (KMC) physical simulation. This issue has become an important limitation for multilevel cell (MLC) applications. The physical KMC simulation replicates the RRAM cell‐to‐cell intrinsic resistance variability due to the conductive filament (CF) morphology fluctuations and the weak correlation between the number of oxygen vacancies and the resulting resistance. It furthermore accurately simulates the vacancies’ microscopic dynamics within the CF that are responsible for the RRAM resistance relaxation. A link between programming current, CF size/configuration, and relaxation amplitude is clarified and shows the ensuing benefits and limitations of smart programming techniques (read &amp; verify) for MLC applications. Coupled with experimental data obtained on HfO2‐based RRAM arrays, this simulation paves the way to a better understanding of the physics at stake in the RRAM relaxation process and provides guidelines to potential technological solutions for MLC reliability prediction. This work explores the physical phenomenon behind the HfO2‐based resistive random access memory (RRAM) resistance relaxation and its impact on multilevel cell applications through experimental measurements and kinetic Monte Carlo simulations. From the microscopic dynamics at work in the RRAM, guidelines to overcome the relaxation phenomenon are drawn at the scale of programming, material engineering, and device architecture.</description><identifier>ISSN: 1862-6300</identifier><identifier>EISSN: 1862-6319</identifier><identifier>DOI: 10.1002/pssa.202100753</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Engineering Sciences ; Hafnium oxide ; kinetic Monte Carlo simulations ; Monte Carlo simulation ; multilevel cells ; OxRAM ; Physical simulation ; Random access memory ; relaxation ; resistive random access memory ; Vacancies</subject><ispartof>Physica status solidi. A, Applications and materials science, 2022-07, Vol.219 (13), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3063-425757f5729aa4f427081774bc9d30c5fc193c06e5100cb6b7333659e4b922003</cites><orcidid>0000-0002-2689-0684 ; 0000-0003-2394-1359</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssa.202100753$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssa.202100753$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03840622$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Reganaz, Lucas</creatorcontrib><creatorcontrib>Esmanhotto, Eduardo</creatorcontrib><creatorcontrib>Ait Abdelkader, Nazim</creatorcontrib><creatorcontrib>Minguet Lopez, Joel</creatorcontrib><creatorcontrib>Castellani, Niccolo</creatorcontrib><creatorcontrib>Rafhay, Quentin</creatorcontrib><creatorcontrib>Deleruyelle, Damien</creatorcontrib><creatorcontrib>Grenouillet, Laurent</creatorcontrib><creatorcontrib>Aussenac, Francois</creatorcontrib><creatorcontrib>Vianello, Elisa</creatorcontrib><creatorcontrib>Andrieu, François</creatorcontrib><creatorcontrib>Molas, Gabriel</creatorcontrib><title>Elucidating Postprogramming Relaxation in Multilevel Cell‐Resistive Random Access Memory by Means of Experimental and Kinetic Monte Carlo Simulation Data</title><title>Physica status solidi. A, Applications and materials science</title><description>This work explores the phenomenon of HfO2 resistive random access memory (RRAM) postprogramming resistance relaxation using experimental data and kinetic Monte Carlo (KMC) physical simulation. This issue has become an important limitation for multilevel cell (MLC) applications. The physical KMC simulation replicates the RRAM cell‐to‐cell intrinsic resistance variability due to the conductive filament (CF) morphology fluctuations and the weak correlation between the number of oxygen vacancies and the resulting resistance. It furthermore accurately simulates the vacancies’ microscopic dynamics within the CF that are responsible for the RRAM resistance relaxation. A link between programming current, CF size/configuration, and relaxation amplitude is clarified and shows the ensuing benefits and limitations of smart programming techniques (read &amp; verify) for MLC applications. Coupled with experimental data obtained on HfO2‐based RRAM arrays, this simulation paves the way to a better understanding of the physics at stake in the RRAM relaxation process and provides guidelines to potential technological solutions for MLC reliability prediction. This work explores the physical phenomenon behind the HfO2‐based resistive random access memory (RRAM) resistance relaxation and its impact on multilevel cell applications through experimental measurements and kinetic Monte Carlo simulations. From the microscopic dynamics at work in the RRAM, guidelines to overcome the relaxation phenomenon are drawn at the scale of programming, material engineering, and device architecture.</description><subject>Engineering Sciences</subject><subject>Hafnium oxide</subject><subject>kinetic Monte Carlo simulations</subject><subject>Monte Carlo simulation</subject><subject>multilevel cells</subject><subject>OxRAM</subject><subject>Physical simulation</subject><subject>Random access memory</subject><subject>relaxation</subject><subject>resistive random access memory</subject><subject>Vacancies</subject><issn>1862-6300</issn><issn>1862-6319</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkcFuEzEQhleISpSWK2dLnDgkjO21HR-jECgiUasEzpbX8RZXXjusvaG58QjceTueBEeL0iMnz9jfPx79f1W9xjDFAOTdPiU9JUBKIxh9Vl3iGScTTrF8fq4BXlQvU3oAqFkt8GX1e-kH43Y6u3CP7mLK-z7e97rrTv3Gev1YnmJALqD14LPz9mA9Wljv__z8tbHJpewOFm102MUOzY2xKaG17WJ_RM2xVDokFFu0fNzb3nU2ZO1RgdFnF2x2Bq1jyBYtdO8j2rpu8ON_73XW19VFq32yr_6dV9XXD8svi5vJ6vbjp8V8NTEUOJ3UhAkmWiaI1LpuayJghoWoGyN3FAxrDZbUALesOGMa3ghKKWfS1o0kBIBeVW_Hud-0V_uype6PKmqnbuYrdboDOquBE3LAhX0zssWn74NNWT3EoQ9lPUX4jEnBQcpCTUfK9DGl3rbnsRjUKSx1CkudwyoCOQp-FIeP_6HV3XY7f9L-BbghmkE</recordid><startdate>202207</startdate><enddate>202207</enddate><creator>Reganaz, Lucas</creator><creator>Esmanhotto, Eduardo</creator><creator>Ait Abdelkader, Nazim</creator><creator>Minguet Lopez, Joel</creator><creator>Castellani, Niccolo</creator><creator>Rafhay, Quentin</creator><creator>Deleruyelle, Damien</creator><creator>Grenouillet, Laurent</creator><creator>Aussenac, Francois</creator><creator>Vianello, Elisa</creator><creator>Andrieu, François</creator><creator>Molas, Gabriel</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-2689-0684</orcidid><orcidid>https://orcid.org/0000-0003-2394-1359</orcidid></search><sort><creationdate>202207</creationdate><title>Elucidating Postprogramming Relaxation in Multilevel Cell‐Resistive Random Access Memory by Means of Experimental and Kinetic Monte Carlo Simulation Data</title><author>Reganaz, Lucas ; Esmanhotto, Eduardo ; Ait Abdelkader, Nazim ; Minguet Lopez, Joel ; Castellani, Niccolo ; Rafhay, Quentin ; Deleruyelle, Damien ; Grenouillet, Laurent ; Aussenac, Francois ; Vianello, Elisa ; Andrieu, François ; Molas, Gabriel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3063-425757f5729aa4f427081774bc9d30c5fc193c06e5100cb6b7333659e4b922003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Engineering Sciences</topic><topic>Hafnium oxide</topic><topic>kinetic Monte Carlo simulations</topic><topic>Monte Carlo simulation</topic><topic>multilevel cells</topic><topic>OxRAM</topic><topic>Physical simulation</topic><topic>Random access memory</topic><topic>relaxation</topic><topic>resistive random access memory</topic><topic>Vacancies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reganaz, Lucas</creatorcontrib><creatorcontrib>Esmanhotto, Eduardo</creatorcontrib><creatorcontrib>Ait Abdelkader, Nazim</creatorcontrib><creatorcontrib>Minguet Lopez, Joel</creatorcontrib><creatorcontrib>Castellani, Niccolo</creatorcontrib><creatorcontrib>Rafhay, Quentin</creatorcontrib><creatorcontrib>Deleruyelle, Damien</creatorcontrib><creatorcontrib>Grenouillet, Laurent</creatorcontrib><creatorcontrib>Aussenac, Francois</creatorcontrib><creatorcontrib>Vianello, Elisa</creatorcontrib><creatorcontrib>Andrieu, François</creatorcontrib><creatorcontrib>Molas, Gabriel</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Physica status solidi. A, Applications and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reganaz, Lucas</au><au>Esmanhotto, Eduardo</au><au>Ait Abdelkader, Nazim</au><au>Minguet Lopez, Joel</au><au>Castellani, Niccolo</au><au>Rafhay, Quentin</au><au>Deleruyelle, Damien</au><au>Grenouillet, Laurent</au><au>Aussenac, Francois</au><au>Vianello, Elisa</au><au>Andrieu, François</au><au>Molas, Gabriel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elucidating Postprogramming Relaxation in Multilevel Cell‐Resistive Random Access Memory by Means of Experimental and Kinetic Monte Carlo Simulation Data</atitle><jtitle>Physica status solidi. A, Applications and materials science</jtitle><date>2022-07</date><risdate>2022</risdate><volume>219</volume><issue>13</issue><epage>n/a</epage><issn>1862-6300</issn><eissn>1862-6319</eissn><abstract>This work explores the phenomenon of HfO2 resistive random access memory (RRAM) postprogramming resistance relaxation using experimental data and kinetic Monte Carlo (KMC) physical simulation. This issue has become an important limitation for multilevel cell (MLC) applications. The physical KMC simulation replicates the RRAM cell‐to‐cell intrinsic resistance variability due to the conductive filament (CF) morphology fluctuations and the weak correlation between the number of oxygen vacancies and the resulting resistance. It furthermore accurately simulates the vacancies’ microscopic dynamics within the CF that are responsible for the RRAM resistance relaxation. A link between programming current, CF size/configuration, and relaxation amplitude is clarified and shows the ensuing benefits and limitations of smart programming techniques (read &amp; verify) for MLC applications. Coupled with experimental data obtained on HfO2‐based RRAM arrays, this simulation paves the way to a better understanding of the physics at stake in the RRAM relaxation process and provides guidelines to potential technological solutions for MLC reliability prediction. This work explores the physical phenomenon behind the HfO2‐based resistive random access memory (RRAM) resistance relaxation and its impact on multilevel cell applications through experimental measurements and kinetic Monte Carlo simulations. From the microscopic dynamics at work in the RRAM, guidelines to overcome the relaxation phenomenon are drawn at the scale of programming, material engineering, and device architecture.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/pssa.202100753</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2689-0684</orcidid><orcidid>https://orcid.org/0000-0003-2394-1359</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1862-6300
ispartof Physica status solidi. A, Applications and materials science, 2022-07, Vol.219 (13), p.n/a
issn 1862-6300
1862-6319
language eng
recordid cdi_hal_primary_oai_HAL_hal_03840622v1
source Wiley Blackwell Single Titles
subjects Engineering Sciences
Hafnium oxide
kinetic Monte Carlo simulations
Monte Carlo simulation
multilevel cells
OxRAM
Physical simulation
Random access memory
relaxation
resistive random access memory
Vacancies
title Elucidating Postprogramming Relaxation in Multilevel Cell‐Resistive Random Access Memory by Means of Experimental and Kinetic Monte Carlo Simulation Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T15%3A17%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elucidating%20Postprogramming%20Relaxation%20in%20Multilevel%20Cell%E2%80%90Resistive%20Random%20Access%20Memory%20by%20Means%20of%20Experimental%20and%20Kinetic%20Monte%20Carlo%20Simulation%20Data&rft.jtitle=Physica%20status%20solidi.%20A,%20Applications%20and%20materials%20science&rft.au=Reganaz,%20Lucas&rft.date=2022-07&rft.volume=219&rft.issue=13&rft.epage=n/a&rft.issn=1862-6300&rft.eissn=1862-6319&rft_id=info:doi/10.1002/pssa.202100753&rft_dat=%3Cproquest_hal_p%3E2685976099%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2685976099&rft_id=info:pmid/&rfr_iscdi=true