A robust 3D crack growth method based on the eXtended Finite Element Method and the Fast Marching Method

In the context of the eXtended Finite Element Method (X-FEM), the use of two level set functions allows the representation of the crack to be achieved regardless of the mesh. The initial crack geometry is represented by two distinct level set functions, and the crack propagation is simulated by an u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of fracture 2022-06, Vol.235 (2), p.243-265
Hauptverfasser: Le Cren, M., Martin, A., Massin, P., Moës, N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 265
container_issue 2
container_start_page 243
container_title International journal of fracture
container_volume 235
creator Le Cren, M.
Martin, A.
Massin, P.
Moës, N.
description In the context of the eXtended Finite Element Method (X-FEM), the use of two level set functions allows the representation of the crack to be achieved regardless of the mesh. The initial crack geometry is represented by two distinct level set functions, and the crack propagation is simulated by an update of these two level set functions. In this paper, we propose a new approach, based on the Fast Marching Method (FMM), to update the level set functions. We also propose a new implementation of the FMM, designed for tetrahedral volume meshes. We then extend this method to all types of volume elements (tetrahedra, hexahedra, pentahedra, pyramids) available in a standard finite element library. The proposed approach allows one to use the same mesh to solve the mechanical problem and to update the level set functions. Non-planar quasi-static crack growth simulations are presented to demonstrate the robustness of the approach, compared to existing methods based on the integration of Hamilton-Jacobi equations or geometric approaches.
doi_str_mv 10.1007/s10704-022-00632-4
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03838806v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2706500275</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-9a4981429aa8c2387b65ec2cec9dfa6569535df12d4ee194f715dc49605c7a683</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwFPAk4fVyf_Nsai1QsWLgreQZrPd1XZXk1Tx25u6RW-ehpn5vcfjIXRK4IIAqMtIQAEvgNICQDJa8D00IkKxgkrF9tEImJKF5lQfoqMYXwBAq5KPUDPBoV9sYsLsGrtg3Stehv4zNXjtU9NXeGGjr3Df4dR47J-T76q8T9uuTR7frPzadwnfD6ztqh9sarPfvQ2uabvl7nmMDmq7iv5kN8foaXrzeDUr5g-3d1eTeeGYVqnQluuS5JzWlo6yUi2k8I4673RVWymkFkxUNaEV955oXisiKse1BOGUlSUbo_PBt7Er8xbatQ1fpretmU3mZnsDVrKyBPlBMns2sG-hf9_4mMxLvwldjmeoAikAqBKZogPlQh9j8PWvLQGzbd8M7Zvcvvlp3_AsYoMoZrhb-vBn_Y_qGw0ThXo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2706500275</pqid></control><display><type>article</type><title>A robust 3D crack growth method based on the eXtended Finite Element Method and the Fast Marching Method</title><source>SpringerLink Journals - AutoHoldings</source><creator>Le Cren, M. ; Martin, A. ; Massin, P. ; Moës, N.</creator><creatorcontrib>Le Cren, M. ; Martin, A. ; Massin, P. ; Moës, N.</creatorcontrib><description>In the context of the eXtended Finite Element Method (X-FEM), the use of two level set functions allows the representation of the crack to be achieved regardless of the mesh. The initial crack geometry is represented by two distinct level set functions, and the crack propagation is simulated by an update of these two level set functions. In this paper, we propose a new approach, based on the Fast Marching Method (FMM), to update the level set functions. We also propose a new implementation of the FMM, designed for tetrahedral volume meshes. We then extend this method to all types of volume elements (tetrahedra, hexahedra, pentahedra, pyramids) available in a standard finite element library. The proposed approach allows one to use the same mesh to solve the mechanical problem and to update the level set functions. Non-planar quasi-static crack growth simulations are presented to demonstrate the robustness of the approach, compared to existing methods based on the integration of Hamilton-Jacobi equations or geometric approaches.</description><identifier>ISSN: 0376-9429</identifier><identifier>EISSN: 1573-2673</identifier><identifier>DOI: 10.1007/s10704-022-00632-4</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Characterization and Evaluation of Materials ; Civil Engineering ; Classical Mechanics ; Crack geometry ; Crack propagation ; Engineering ; Engineering Sciences ; Finite element analysis ; Finite element method ; Hamilton-Jacobi equation ; Materials and structures in mechanics ; Mechanical Engineering ; Mechanics ; Original Paper ; Pyramids ; Tetrahedra</subject><ispartof>International journal of fracture, 2022-06, Vol.235 (2), p.243-265</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-9a4981429aa8c2387b65ec2cec9dfa6569535df12d4ee194f715dc49605c7a683</citedby><cites>FETCH-LOGICAL-c397t-9a4981429aa8c2387b65ec2cec9dfa6569535df12d4ee194f715dc49605c7a683</cites><orcidid>0000-0003-4178-9530 ; 0000-0001-9196-8639</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10704-022-00632-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10704-022-00632-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27915,27916,41479,42548,51310</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03838806$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Le Cren, M.</creatorcontrib><creatorcontrib>Martin, A.</creatorcontrib><creatorcontrib>Massin, P.</creatorcontrib><creatorcontrib>Moës, N.</creatorcontrib><title>A robust 3D crack growth method based on the eXtended Finite Element Method and the Fast Marching Method</title><title>International journal of fracture</title><addtitle>Int J Fract</addtitle><description>In the context of the eXtended Finite Element Method (X-FEM), the use of two level set functions allows the representation of the crack to be achieved regardless of the mesh. The initial crack geometry is represented by two distinct level set functions, and the crack propagation is simulated by an update of these two level set functions. In this paper, we propose a new approach, based on the Fast Marching Method (FMM), to update the level set functions. We also propose a new implementation of the FMM, designed for tetrahedral volume meshes. We then extend this method to all types of volume elements (tetrahedra, hexahedra, pentahedra, pyramids) available in a standard finite element library. The proposed approach allows one to use the same mesh to solve the mechanical problem and to update the level set functions. Non-planar quasi-static crack growth simulations are presented to demonstrate the robustness of the approach, compared to existing methods based on the integration of Hamilton-Jacobi equations or geometric approaches.</description><subject>Automotive Engineering</subject><subject>Characterization and Evaluation of Materials</subject><subject>Civil Engineering</subject><subject>Classical Mechanics</subject><subject>Crack geometry</subject><subject>Crack propagation</subject><subject>Engineering</subject><subject>Engineering Sciences</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Hamilton-Jacobi equation</subject><subject>Materials and structures in mechanics</subject><subject>Mechanical Engineering</subject><subject>Mechanics</subject><subject>Original Paper</subject><subject>Pyramids</subject><subject>Tetrahedra</subject><issn>0376-9429</issn><issn>1573-2673</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE9LAzEQxYMoWKtfwFPAk4fVyf_Nsai1QsWLgreQZrPd1XZXk1Tx25u6RW-ehpn5vcfjIXRK4IIAqMtIQAEvgNICQDJa8D00IkKxgkrF9tEImJKF5lQfoqMYXwBAq5KPUDPBoV9sYsLsGrtg3Stehv4zNXjtU9NXeGGjr3Df4dR47J-T76q8T9uuTR7frPzadwnfD6ztqh9sarPfvQ2uabvl7nmMDmq7iv5kN8foaXrzeDUr5g-3d1eTeeGYVqnQluuS5JzWlo6yUi2k8I4673RVWymkFkxUNaEV955oXisiKse1BOGUlSUbo_PBt7Er8xbatQ1fpretmU3mZnsDVrKyBPlBMns2sG-hf9_4mMxLvwldjmeoAikAqBKZogPlQh9j8PWvLQGzbd8M7Zvcvvlp3_AsYoMoZrhb-vBn_Y_qGw0ThXo</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Le Cren, M.</creator><creator>Martin, A.</creator><creator>Massin, P.</creator><creator>Moës, N.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-4178-9530</orcidid><orcidid>https://orcid.org/0000-0001-9196-8639</orcidid></search><sort><creationdate>20220601</creationdate><title>A robust 3D crack growth method based on the eXtended Finite Element Method and the Fast Marching Method</title><author>Le Cren, M. ; Martin, A. ; Massin, P. ; Moës, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-9a4981429aa8c2387b65ec2cec9dfa6569535df12d4ee194f715dc49605c7a683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Automotive Engineering</topic><topic>Characterization and Evaluation of Materials</topic><topic>Civil Engineering</topic><topic>Classical Mechanics</topic><topic>Crack geometry</topic><topic>Crack propagation</topic><topic>Engineering</topic><topic>Engineering Sciences</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Hamilton-Jacobi equation</topic><topic>Materials and structures in mechanics</topic><topic>Mechanical Engineering</topic><topic>Mechanics</topic><topic>Original Paper</topic><topic>Pyramids</topic><topic>Tetrahedra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Le Cren, M.</creatorcontrib><creatorcontrib>Martin, A.</creatorcontrib><creatorcontrib>Massin, P.</creatorcontrib><creatorcontrib>Moës, N.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>International journal of fracture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Le Cren, M.</au><au>Martin, A.</au><au>Massin, P.</au><au>Moës, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A robust 3D crack growth method based on the eXtended Finite Element Method and the Fast Marching Method</atitle><jtitle>International journal of fracture</jtitle><stitle>Int J Fract</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>235</volume><issue>2</issue><spage>243</spage><epage>265</epage><pages>243-265</pages><issn>0376-9429</issn><eissn>1573-2673</eissn><abstract>In the context of the eXtended Finite Element Method (X-FEM), the use of two level set functions allows the representation of the crack to be achieved regardless of the mesh. The initial crack geometry is represented by two distinct level set functions, and the crack propagation is simulated by an update of these two level set functions. In this paper, we propose a new approach, based on the Fast Marching Method (FMM), to update the level set functions. We also propose a new implementation of the FMM, designed for tetrahedral volume meshes. We then extend this method to all types of volume elements (tetrahedra, hexahedra, pentahedra, pyramids) available in a standard finite element library. The proposed approach allows one to use the same mesh to solve the mechanical problem and to update the level set functions. Non-planar quasi-static crack growth simulations are presented to demonstrate the robustness of the approach, compared to existing methods based on the integration of Hamilton-Jacobi equations or geometric approaches.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10704-022-00632-4</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0003-4178-9530</orcidid><orcidid>https://orcid.org/0000-0001-9196-8639</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0376-9429
ispartof International journal of fracture, 2022-06, Vol.235 (2), p.243-265
issn 0376-9429
1573-2673
language eng
recordid cdi_hal_primary_oai_HAL_hal_03838806v1
source SpringerLink Journals - AutoHoldings
subjects Automotive Engineering
Characterization and Evaluation of Materials
Civil Engineering
Classical Mechanics
Crack geometry
Crack propagation
Engineering
Engineering Sciences
Finite element analysis
Finite element method
Hamilton-Jacobi equation
Materials and structures in mechanics
Mechanical Engineering
Mechanics
Original Paper
Pyramids
Tetrahedra
title A robust 3D crack growth method based on the eXtended Finite Element Method and the Fast Marching Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T00%3A35%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20robust%203D%20crack%20growth%20method%20based%20on%20the%20eXtended%20Finite%20Element%20Method%20and%20the%20Fast%20Marching%20Method&rft.jtitle=International%20journal%20of%20fracture&rft.au=Le%20Cren,%20M.&rft.date=2022-06-01&rft.volume=235&rft.issue=2&rft.spage=243&rft.epage=265&rft.pages=243-265&rft.issn=0376-9429&rft.eissn=1573-2673&rft_id=info:doi/10.1007/s10704-022-00632-4&rft_dat=%3Cproquest_hal_p%3E2706500275%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2706500275&rft_id=info:pmid/&rfr_iscdi=true