De novo revertant fiber formation and therapy testing in a 3D culture model of Duchenne muscular dystrophy skeletal muscle

The biological basis of Duchenne muscular dystrophy (DMD) pathology is only partially characterized and there are still few disease-modifying therapies available, therein underlying the value of strategies to model and study DMD. Dystrophin, the causative gene of DMD, is responsible for linking the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta biomaterialia 2021-09, Vol.132, p.227-244
Hauptverfasser: Ebrahimi, Majid, Lad, Heta, Fusto, Aurora, Tiper, Yekaterina, Datye, Asiman, Nguyen, Christine T., Jacques, Erik, Moyle, Louise A., Nguyen, Thy, Musgrave, Brennen, Chávez-Madero, Carolina, Bigot, Anne, Chen, Chun, Turner, Scott, Stewart, Bryan A., Pegoraro, Elena, Vitiello, Libero, Gilbert, Penney M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 244
container_issue
container_start_page 227
container_title Acta biomaterialia
container_volume 132
creator Ebrahimi, Majid
Lad, Heta
Fusto, Aurora
Tiper, Yekaterina
Datye, Asiman
Nguyen, Christine T.
Jacques, Erik
Moyle, Louise A.
Nguyen, Thy
Musgrave, Brennen
Chávez-Madero, Carolina
Bigot, Anne
Chen, Chun
Turner, Scott
Stewart, Bryan A.
Pegoraro, Elena
Vitiello, Libero
Gilbert, Penney M.
description The biological basis of Duchenne muscular dystrophy (DMD) pathology is only partially characterized and there are still few disease-modifying therapies available, therein underlying the value of strategies to model and study DMD. Dystrophin, the causative gene of DMD, is responsible for linking the cytoskeleton of muscle fibers to the extracellular matrix beyond the sarcolemma. We posited that disease-associated phenotypes not yet captured by two-dimensional culture methods would arise by generating multinucleated muscle cells within a three-dimensional (3D) extracellular matrix environment. Herein we report methods to produce 3D human skeletal muscle microtissues (hMMTs) using clonal, immortalized myoblast lines established from healthy and DMD donors. We also established protocols to evaluate immortalized hMMT self-organization and myotube maturation, as well as calcium handling, force generation, membrane stability (i.e., creatine kinase activity and Evans blue dye permeability) and contractile apparatus organization following electrical-stimulation. In examining hMMTs generated with a cell line wherein the dystrophin gene possessed a duplication of exon 2, we observed rare dystrophin-positive myotubes, which were not seen in 2D cultures. Further, we show that treating DMD hMMTs with a β1-integrin activating antibody, improves contractile apparatus maturation and stability. Hence, immortalized myoblast-derived DMD hMMTs offer a pre-clinical system with which to investigate the potential of duplicated exon skipping strategies and those that protect muscle cells from contraction-induced injury. Duchenne muscular dystrophy (DMD) is a progressive muscle-wasting disorder that is caused by mutation of the dystrophin gene. The biological basis of DMD pathology is only partially characterized and there is no cure for this fatal disease. Here we report a method to produce 3D human skeletal muscle microtissues (hMMTs) using immortalized human DMD and healthy myoblasts. Morphological and functional assessment revealed DMD-associated pathophysiology including impaired calcium handling and de novo formation of dystrophin-positive revertant muscle cells in immortalized DMD hMMTs harbouring an exon 2 duplication, a feature of many DMD patients that has not been recapitulated in culture prior to this report. We further demonstrate that this “DMD in a dish” system can be used as a pre-clinical assay to test a putative DMD therapeutic and study the mechanism of action. [
doi_str_mv 10.1016/j.actbio.2021.05.020
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03832641v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1742706121003305</els_id><sourcerecordid>2534612096</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-ac05293d31cd91cd053bf2af8a38f632094dc35fec11f0b2151cc965e0e0e3373</originalsourceid><addsrcrecordid>eNp9kcGOFCEQhjtGE9fVN_BA4kUP3RbQdNMXk82OuiaTeNEzYejCYWRgBHqS8ellbOPBgyEEUvXVD1V_07yk0FGgw9tDp03ZudgxYLQD0QGDR80NlaNsRzHIx_U-9qwdYaBPm2c5HwC4pEzeND83SEI8R5LwjKnoUIh1O0zExnTUxcVAdJhJ2WPSpwspmIsL34irYcI3xCy-LAnJMc7oSbRks5g9hlAjS65Jnch8ySXF0_5C8nf0WLT_nfP4vHlitc_44s9523z98P7L_UO7_fzx0_3dtjU90NJqA4JNfObUzFPdIPjOMm2l5tIOnMHUz4YLi4ZSCztGBTVmGgRCXZyP_LZ5s-rutVen5I46XVTUTj3cbdU1VmfB2dDTM63s65U9pfhjqc2qo8sGvdcB45IVE7wfaH1zqOirf9BDXFKonVRqnMZR9vIq2K-USTHnhPbvDyioq3nqoFbz1NU8BUJV82rZu7UM62DODpPKxmEwOLuEpqg5uv8L_ALe_aSg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2579778481</pqid></control><display><type>article</type><title>De novo revertant fiber formation and therapy testing in a 3D culture model of Duchenne muscular dystrophy skeletal muscle</title><source>Elsevier ScienceDirect Journals</source><creator>Ebrahimi, Majid ; Lad, Heta ; Fusto, Aurora ; Tiper, Yekaterina ; Datye, Asiman ; Nguyen, Christine T. ; Jacques, Erik ; Moyle, Louise A. ; Nguyen, Thy ; Musgrave, Brennen ; Chávez-Madero, Carolina ; Bigot, Anne ; Chen, Chun ; Turner, Scott ; Stewart, Bryan A. ; Pegoraro, Elena ; Vitiello, Libero ; Gilbert, Penney M.</creator><creatorcontrib>Ebrahimi, Majid ; Lad, Heta ; Fusto, Aurora ; Tiper, Yekaterina ; Datye, Asiman ; Nguyen, Christine T. ; Jacques, Erik ; Moyle, Louise A. ; Nguyen, Thy ; Musgrave, Brennen ; Chávez-Madero, Carolina ; Bigot, Anne ; Chen, Chun ; Turner, Scott ; Stewart, Bryan A. ; Pegoraro, Elena ; Vitiello, Libero ; Gilbert, Penney M.</creatorcontrib><description>The biological basis of Duchenne muscular dystrophy (DMD) pathology is only partially characterized and there are still few disease-modifying therapies available, therein underlying the value of strategies to model and study DMD. Dystrophin, the causative gene of DMD, is responsible for linking the cytoskeleton of muscle fibers to the extracellular matrix beyond the sarcolemma. We posited that disease-associated phenotypes not yet captured by two-dimensional culture methods would arise by generating multinucleated muscle cells within a three-dimensional (3D) extracellular matrix environment. Herein we report methods to produce 3D human skeletal muscle microtissues (hMMTs) using clonal, immortalized myoblast lines established from healthy and DMD donors. We also established protocols to evaluate immortalized hMMT self-organization and myotube maturation, as well as calcium handling, force generation, membrane stability (i.e., creatine kinase activity and Evans blue dye permeability) and contractile apparatus organization following electrical-stimulation. In examining hMMTs generated with a cell line wherein the dystrophin gene possessed a duplication of exon 2, we observed rare dystrophin-positive myotubes, which were not seen in 2D cultures. Further, we show that treating DMD hMMTs with a β1-integrin activating antibody, improves contractile apparatus maturation and stability. Hence, immortalized myoblast-derived DMD hMMTs offer a pre-clinical system with which to investigate the potential of duplicated exon skipping strategies and those that protect muscle cells from contraction-induced injury. Duchenne muscular dystrophy (DMD) is a progressive muscle-wasting disorder that is caused by mutation of the dystrophin gene. The biological basis of DMD pathology is only partially characterized and there is no cure for this fatal disease. Here we report a method to produce 3D human skeletal muscle microtissues (hMMTs) using immortalized human DMD and healthy myoblasts. Morphological and functional assessment revealed DMD-associated pathophysiology including impaired calcium handling and de novo formation of dystrophin-positive revertant muscle cells in immortalized DMD hMMTs harbouring an exon 2 duplication, a feature of many DMD patients that has not been recapitulated in culture prior to this report. We further demonstrate that this “DMD in a dish” system can be used as a pre-clinical assay to test a putative DMD therapeutic and study the mechanism of action. [Display omitted]</description><identifier>ISSN: 1742-7061</identifier><identifier>EISSN: 1878-7568</identifier><identifier>DOI: 10.1016/j.actbio.2021.05.020</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Antibodies ; Cell culture ; Contraction ; Creatine ; Creatine kinase ; Culture ; Cytoskeleton ; Disease modeling ; DMD ; Duchenne's muscular dystrophy ; Dystrophin ; Dystrophy ; Exon skipping ; Extracellular matrix ; Human skeletal muscle ; Immortalized human myoblast ; Kinases ; Life Sciences ; Maturation ; Membrane permeability ; Muscle contraction ; Muscles ; Muscular dystrophy ; Musculoskeletal system ; Myoblasts ; Myotubes ; Phenotypes ; Production methods ; Reproduction (copying) ; Revertant fiber ; Sarcolemma ; Skeletal muscle ; Stability ; Therapy ; Three dimensional models ; Tissue Engineering</subject><ispartof>Acta biomaterialia, 2021-09, Vol.132, p.227-244</ispartof><rights>2021</rights><rights>Copyright Elsevier BV Sep 15, 2021</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-ac05293d31cd91cd053bf2af8a38f632094dc35fec11f0b2151cc965e0e0e3373</citedby><cites>FETCH-LOGICAL-c401t-ac05293d31cd91cd053bf2af8a38f632094dc35fec11f0b2151cc965e0e0e3373</cites><orcidid>0000-0003-2520-3632 ; 0000-0002-8356-7947 ; 0000-0003-0017-0838 ; 0000-0002-1868-0900 ; 0000-0002-3034-5224 ; 0000-0002-6618-6405 ; 0000-0003-0337-5425</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1742706121003305$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.sorbonne-universite.fr/hal-03832641$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ebrahimi, Majid</creatorcontrib><creatorcontrib>Lad, Heta</creatorcontrib><creatorcontrib>Fusto, Aurora</creatorcontrib><creatorcontrib>Tiper, Yekaterina</creatorcontrib><creatorcontrib>Datye, Asiman</creatorcontrib><creatorcontrib>Nguyen, Christine T.</creatorcontrib><creatorcontrib>Jacques, Erik</creatorcontrib><creatorcontrib>Moyle, Louise A.</creatorcontrib><creatorcontrib>Nguyen, Thy</creatorcontrib><creatorcontrib>Musgrave, Brennen</creatorcontrib><creatorcontrib>Chávez-Madero, Carolina</creatorcontrib><creatorcontrib>Bigot, Anne</creatorcontrib><creatorcontrib>Chen, Chun</creatorcontrib><creatorcontrib>Turner, Scott</creatorcontrib><creatorcontrib>Stewart, Bryan A.</creatorcontrib><creatorcontrib>Pegoraro, Elena</creatorcontrib><creatorcontrib>Vitiello, Libero</creatorcontrib><creatorcontrib>Gilbert, Penney M.</creatorcontrib><title>De novo revertant fiber formation and therapy testing in a 3D culture model of Duchenne muscular dystrophy skeletal muscle</title><title>Acta biomaterialia</title><description>The biological basis of Duchenne muscular dystrophy (DMD) pathology is only partially characterized and there are still few disease-modifying therapies available, therein underlying the value of strategies to model and study DMD. Dystrophin, the causative gene of DMD, is responsible for linking the cytoskeleton of muscle fibers to the extracellular matrix beyond the sarcolemma. We posited that disease-associated phenotypes not yet captured by two-dimensional culture methods would arise by generating multinucleated muscle cells within a three-dimensional (3D) extracellular matrix environment. Herein we report methods to produce 3D human skeletal muscle microtissues (hMMTs) using clonal, immortalized myoblast lines established from healthy and DMD donors. We also established protocols to evaluate immortalized hMMT self-organization and myotube maturation, as well as calcium handling, force generation, membrane stability (i.e., creatine kinase activity and Evans blue dye permeability) and contractile apparatus organization following electrical-stimulation. In examining hMMTs generated with a cell line wherein the dystrophin gene possessed a duplication of exon 2, we observed rare dystrophin-positive myotubes, which were not seen in 2D cultures. Further, we show that treating DMD hMMTs with a β1-integrin activating antibody, improves contractile apparatus maturation and stability. Hence, immortalized myoblast-derived DMD hMMTs offer a pre-clinical system with which to investigate the potential of duplicated exon skipping strategies and those that protect muscle cells from contraction-induced injury. Duchenne muscular dystrophy (DMD) is a progressive muscle-wasting disorder that is caused by mutation of the dystrophin gene. The biological basis of DMD pathology is only partially characterized and there is no cure for this fatal disease. Here we report a method to produce 3D human skeletal muscle microtissues (hMMTs) using immortalized human DMD and healthy myoblasts. Morphological and functional assessment revealed DMD-associated pathophysiology including impaired calcium handling and de novo formation of dystrophin-positive revertant muscle cells in immortalized DMD hMMTs harbouring an exon 2 duplication, a feature of many DMD patients that has not been recapitulated in culture prior to this report. We further demonstrate that this “DMD in a dish” system can be used as a pre-clinical assay to test a putative DMD therapeutic and study the mechanism of action. [Display omitted]</description><subject>Antibodies</subject><subject>Cell culture</subject><subject>Contraction</subject><subject>Creatine</subject><subject>Creatine kinase</subject><subject>Culture</subject><subject>Cytoskeleton</subject><subject>Disease modeling</subject><subject>DMD</subject><subject>Duchenne's muscular dystrophy</subject><subject>Dystrophin</subject><subject>Dystrophy</subject><subject>Exon skipping</subject><subject>Extracellular matrix</subject><subject>Human skeletal muscle</subject><subject>Immortalized human myoblast</subject><subject>Kinases</subject><subject>Life Sciences</subject><subject>Maturation</subject><subject>Membrane permeability</subject><subject>Muscle contraction</subject><subject>Muscles</subject><subject>Muscular dystrophy</subject><subject>Musculoskeletal system</subject><subject>Myoblasts</subject><subject>Myotubes</subject><subject>Phenotypes</subject><subject>Production methods</subject><subject>Reproduction (copying)</subject><subject>Revertant fiber</subject><subject>Sarcolemma</subject><subject>Skeletal muscle</subject><subject>Stability</subject><subject>Therapy</subject><subject>Three dimensional models</subject><subject>Tissue Engineering</subject><issn>1742-7061</issn><issn>1878-7568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kcGOFCEQhjtGE9fVN_BA4kUP3RbQdNMXk82OuiaTeNEzYejCYWRgBHqS8ellbOPBgyEEUvXVD1V_07yk0FGgw9tDp03ZudgxYLQD0QGDR80NlaNsRzHIx_U-9qwdYaBPm2c5HwC4pEzeND83SEI8R5LwjKnoUIh1O0zExnTUxcVAdJhJ2WPSpwspmIsL34irYcI3xCy-LAnJMc7oSbRks5g9hlAjS65Jnch8ySXF0_5C8nf0WLT_nfP4vHlitc_44s9523z98P7L_UO7_fzx0_3dtjU90NJqA4JNfObUzFPdIPjOMm2l5tIOnMHUz4YLi4ZSCztGBTVmGgRCXZyP_LZ5s-rutVen5I46XVTUTj3cbdU1VmfB2dDTM63s65U9pfhjqc2qo8sGvdcB45IVE7wfaH1zqOirf9BDXFKonVRqnMZR9vIq2K-USTHnhPbvDyioq3nqoFbz1NU8BUJV82rZu7UM62DODpPKxmEwOLuEpqg5uv8L_ALe_aSg</recordid><startdate>20210915</startdate><enddate>20210915</enddate><creator>Ebrahimi, Majid</creator><creator>Lad, Heta</creator><creator>Fusto, Aurora</creator><creator>Tiper, Yekaterina</creator><creator>Datye, Asiman</creator><creator>Nguyen, Christine T.</creator><creator>Jacques, Erik</creator><creator>Moyle, Louise A.</creator><creator>Nguyen, Thy</creator><creator>Musgrave, Brennen</creator><creator>Chávez-Madero, Carolina</creator><creator>Bigot, Anne</creator><creator>Chen, Chun</creator><creator>Turner, Scott</creator><creator>Stewart, Bryan A.</creator><creator>Pegoraro, Elena</creator><creator>Vitiello, Libero</creator><creator>Gilbert, Penney M.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-2520-3632</orcidid><orcidid>https://orcid.org/0000-0002-8356-7947</orcidid><orcidid>https://orcid.org/0000-0003-0017-0838</orcidid><orcidid>https://orcid.org/0000-0002-1868-0900</orcidid><orcidid>https://orcid.org/0000-0002-3034-5224</orcidid><orcidid>https://orcid.org/0000-0002-6618-6405</orcidid><orcidid>https://orcid.org/0000-0003-0337-5425</orcidid></search><sort><creationdate>20210915</creationdate><title>De novo revertant fiber formation and therapy testing in a 3D culture model of Duchenne muscular dystrophy skeletal muscle</title><author>Ebrahimi, Majid ; Lad, Heta ; Fusto, Aurora ; Tiper, Yekaterina ; Datye, Asiman ; Nguyen, Christine T. ; Jacques, Erik ; Moyle, Louise A. ; Nguyen, Thy ; Musgrave, Brennen ; Chávez-Madero, Carolina ; Bigot, Anne ; Chen, Chun ; Turner, Scott ; Stewart, Bryan A. ; Pegoraro, Elena ; Vitiello, Libero ; Gilbert, Penney M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-ac05293d31cd91cd053bf2af8a38f632094dc35fec11f0b2151cc965e0e0e3373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Antibodies</topic><topic>Cell culture</topic><topic>Contraction</topic><topic>Creatine</topic><topic>Creatine kinase</topic><topic>Culture</topic><topic>Cytoskeleton</topic><topic>Disease modeling</topic><topic>DMD</topic><topic>Duchenne's muscular dystrophy</topic><topic>Dystrophin</topic><topic>Dystrophy</topic><topic>Exon skipping</topic><topic>Extracellular matrix</topic><topic>Human skeletal muscle</topic><topic>Immortalized human myoblast</topic><topic>Kinases</topic><topic>Life Sciences</topic><topic>Maturation</topic><topic>Membrane permeability</topic><topic>Muscle contraction</topic><topic>Muscles</topic><topic>Muscular dystrophy</topic><topic>Musculoskeletal system</topic><topic>Myoblasts</topic><topic>Myotubes</topic><topic>Phenotypes</topic><topic>Production methods</topic><topic>Reproduction (copying)</topic><topic>Revertant fiber</topic><topic>Sarcolemma</topic><topic>Skeletal muscle</topic><topic>Stability</topic><topic>Therapy</topic><topic>Three dimensional models</topic><topic>Tissue Engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ebrahimi, Majid</creatorcontrib><creatorcontrib>Lad, Heta</creatorcontrib><creatorcontrib>Fusto, Aurora</creatorcontrib><creatorcontrib>Tiper, Yekaterina</creatorcontrib><creatorcontrib>Datye, Asiman</creatorcontrib><creatorcontrib>Nguyen, Christine T.</creatorcontrib><creatorcontrib>Jacques, Erik</creatorcontrib><creatorcontrib>Moyle, Louise A.</creatorcontrib><creatorcontrib>Nguyen, Thy</creatorcontrib><creatorcontrib>Musgrave, Brennen</creatorcontrib><creatorcontrib>Chávez-Madero, Carolina</creatorcontrib><creatorcontrib>Bigot, Anne</creatorcontrib><creatorcontrib>Chen, Chun</creatorcontrib><creatorcontrib>Turner, Scott</creatorcontrib><creatorcontrib>Stewart, Bryan A.</creatorcontrib><creatorcontrib>Pegoraro, Elena</creatorcontrib><creatorcontrib>Vitiello, Libero</creatorcontrib><creatorcontrib>Gilbert, Penney M.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Acta biomaterialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ebrahimi, Majid</au><au>Lad, Heta</au><au>Fusto, Aurora</au><au>Tiper, Yekaterina</au><au>Datye, Asiman</au><au>Nguyen, Christine T.</au><au>Jacques, Erik</au><au>Moyle, Louise A.</au><au>Nguyen, Thy</au><au>Musgrave, Brennen</au><au>Chávez-Madero, Carolina</au><au>Bigot, Anne</au><au>Chen, Chun</au><au>Turner, Scott</au><au>Stewart, Bryan A.</au><au>Pegoraro, Elena</au><au>Vitiello, Libero</au><au>Gilbert, Penney M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>De novo revertant fiber formation and therapy testing in a 3D culture model of Duchenne muscular dystrophy skeletal muscle</atitle><jtitle>Acta biomaterialia</jtitle><date>2021-09-15</date><risdate>2021</risdate><volume>132</volume><spage>227</spage><epage>244</epage><pages>227-244</pages><issn>1742-7061</issn><eissn>1878-7568</eissn><abstract>The biological basis of Duchenne muscular dystrophy (DMD) pathology is only partially characterized and there are still few disease-modifying therapies available, therein underlying the value of strategies to model and study DMD. Dystrophin, the causative gene of DMD, is responsible for linking the cytoskeleton of muscle fibers to the extracellular matrix beyond the sarcolemma. We posited that disease-associated phenotypes not yet captured by two-dimensional culture methods would arise by generating multinucleated muscle cells within a three-dimensional (3D) extracellular matrix environment. Herein we report methods to produce 3D human skeletal muscle microtissues (hMMTs) using clonal, immortalized myoblast lines established from healthy and DMD donors. We also established protocols to evaluate immortalized hMMT self-organization and myotube maturation, as well as calcium handling, force generation, membrane stability (i.e., creatine kinase activity and Evans blue dye permeability) and contractile apparatus organization following electrical-stimulation. In examining hMMTs generated with a cell line wherein the dystrophin gene possessed a duplication of exon 2, we observed rare dystrophin-positive myotubes, which were not seen in 2D cultures. Further, we show that treating DMD hMMTs with a β1-integrin activating antibody, improves contractile apparatus maturation and stability. Hence, immortalized myoblast-derived DMD hMMTs offer a pre-clinical system with which to investigate the potential of duplicated exon skipping strategies and those that protect muscle cells from contraction-induced injury. Duchenne muscular dystrophy (DMD) is a progressive muscle-wasting disorder that is caused by mutation of the dystrophin gene. The biological basis of DMD pathology is only partially characterized and there is no cure for this fatal disease. Here we report a method to produce 3D human skeletal muscle microtissues (hMMTs) using immortalized human DMD and healthy myoblasts. Morphological and functional assessment revealed DMD-associated pathophysiology including impaired calcium handling and de novo formation of dystrophin-positive revertant muscle cells in immortalized DMD hMMTs harbouring an exon 2 duplication, a feature of many DMD patients that has not been recapitulated in culture prior to this report. We further demonstrate that this “DMD in a dish” system can be used as a pre-clinical assay to test a putative DMD therapeutic and study the mechanism of action. [Display omitted]</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.actbio.2021.05.020</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-2520-3632</orcidid><orcidid>https://orcid.org/0000-0002-8356-7947</orcidid><orcidid>https://orcid.org/0000-0003-0017-0838</orcidid><orcidid>https://orcid.org/0000-0002-1868-0900</orcidid><orcidid>https://orcid.org/0000-0002-3034-5224</orcidid><orcidid>https://orcid.org/0000-0002-6618-6405</orcidid><orcidid>https://orcid.org/0000-0003-0337-5425</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1742-7061
ispartof Acta biomaterialia, 2021-09, Vol.132, p.227-244
issn 1742-7061
1878-7568
language eng
recordid cdi_hal_primary_oai_HAL_hal_03832641v1
source Elsevier ScienceDirect Journals
subjects Antibodies
Cell culture
Contraction
Creatine
Creatine kinase
Culture
Cytoskeleton
Disease modeling
DMD
Duchenne's muscular dystrophy
Dystrophin
Dystrophy
Exon skipping
Extracellular matrix
Human skeletal muscle
Immortalized human myoblast
Kinases
Life Sciences
Maturation
Membrane permeability
Muscle contraction
Muscles
Muscular dystrophy
Musculoskeletal system
Myoblasts
Myotubes
Phenotypes
Production methods
Reproduction (copying)
Revertant fiber
Sarcolemma
Skeletal muscle
Stability
Therapy
Three dimensional models
Tissue Engineering
title De novo revertant fiber formation and therapy testing in a 3D culture model of Duchenne muscular dystrophy skeletal muscle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T02%3A22%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=De%20novo%20revertant%20fiber%20formation%20and%20therapy%20testing%20in%20a%203D%20culture%20model%20of%20Duchenne%20muscular%20dystrophy%20skeletal%20muscle&rft.jtitle=Acta%20biomaterialia&rft.au=Ebrahimi,%20Majid&rft.date=2021-09-15&rft.volume=132&rft.spage=227&rft.epage=244&rft.pages=227-244&rft.issn=1742-7061&rft.eissn=1878-7568&rft_id=info:doi/10.1016/j.actbio.2021.05.020&rft_dat=%3Cproquest_hal_p%3E2534612096%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2579778481&rft_id=info:pmid/&rft_els_id=S1742706121003305&rfr_iscdi=true