On Infiltration and Infiltration Characteristic Times
In his seminal paper on the solution of the infiltration equation, Philip (1969), https://doi.org/10.1016/b978-1-4831-9936-8.50010-6 proposed a gravity time, tgrav, to estimate practical convergence time and the time domain validity of his infinite time series expansion, TSE, for describing the tran...
Gespeichert in:
Veröffentlicht in: | Water resources research 2022-05, Vol.58 (5), p.215-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 5 |
container_start_page | 215 |
container_title | Water resources research |
container_volume | 58 |
creator | Rahmati, Mehdi Latorre, Borja Moret‐Fernández, David Lassabatere, Laurent Talebian, Nima Miller, Dane Morbidelli, Renato Iovino, Massimo Bagarello, Vincenzo Neyshabouri, Mohammad Reza Zhao, Ying Vanderborght, Jan Weihermüller, Lutz Jaramillo, Rafael Angulo Or, Dani Th. van Genuchten, Martinus Vereecken, Harry |
description | In his seminal paper on the solution of the infiltration equation, Philip (1969), https://doi.org/10.1016/b978-1-4831-9936-8.50010-6 proposed a gravity time, tgrav, to estimate practical convergence time and the time domain validity of his infinite time series expansion, TSE, for describing the transient state. The parameter tgrav refers to a point in time where infiltration is dominated equally by capillarity and gravity as derived from the first two (dominant) terms of the TSE. Evidence suggests that applicability of the truncated two‐term equation of Philip has a time limit requiring higher‐order TSE terms to better describe the infiltration process for times exceeding that limit. Since the conceptual definition of tgrav is valid regardless of the infiltration model used, we opted to reformulate tgrav using the analytic implicit model proposed by Parlange et al. (1982), https://doi.org/10.1097/00010694-198206000-00001 valid for all times and related TSE. Our derived gravity times ensure a given accuracy of the approximations describing transient states, while also providing insight about the times needed to reach steady state. In addition to the roles of soil sorptivity (S) and the saturated (Ks) and initial (Ki) hydraulic conductivities, we explored the effects of a soil specific shape parameter β, involved in Parlange's model and related to the type of soil, on the behavior of tgrav. We show that the reformulated tgrav (notably tgrav=F(β)S2/Ks−Ki2, ${t}_{\text{grav}}=\,F(\beta ){S}^{2}/{\left({K}_{s}-{K}_{i}\right)}^{2},$ where F(β) is a β‐dependent function) is about three times larger than the classical tgrav given by tgrav,Philip=S2/Ks−Ki2 $\,{t}_{\text{grav},\text{Philip}}={S}^{2}/{\left({K}_{s}-{K}_{i}\right)}^{2}$. The differences between the classical tgrav,Philip and the reformulated tgrav increase for fine‐textured soils, attributed to the time needed to attain steady‐state infiltration and thus i + nfiltration for inferring soil hydraulic properties. Results show that the proposed tgrav is a better indicator of time domain validity than tgrav,Philip. For the attainment of steady‐state infiltration, the reformulated tgrav is suitable for coarse‐textured soils. Still neither the reformulated tgrav nor the classical tgrav,Philip are suitable for fine‐textured soils for which tgrav is too conservative and tgrav,Philip too short. Using tgrav will improve predictions of the soil hydraulic parameters (particularly Ks) from infiltration data compare |
doi_str_mv | 10.1029/2021WR031600 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03830339v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2669537875</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3179-42367c914d74043caf19e46caadb37943812525017bd0b0a737b9a892c1ff93d3</originalsourceid><addsrcrecordid>eNp90E1Lw0AQBuBFFKzVmz-g4EkwOrOzyWaPJagtBAql0uOy-aJb0qTupkr_vSkR0YunGYaHmeFl7BbhEYGrJw4c10sgjADO2AiVEIFUks7ZCEBQgKTkJbvyfguAIozkiIWLZjJvKlt3znS2bSamKf4Oko1xJu9KZ31n88nK7kp_zS4qU_vy5ruO2dvL8yqZBenidZ5M08AQShUITpHMFYpCiv5-bipUpYhyY4qMpBIUIw95CCizAjIwkmSmTKx4jlWlqKAxux_2bkyt987ujDvq1lg9m6b6NAOKCYjUB_b2brB7174fSt_pbXtwTf-e5lGkQpKxDHv1MKjctd67svpZi6BPIerfIfacBv5p6_L4r9XrZbLkfaPoCzNlcA4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2669537875</pqid></control><display><type>article</type><title>On Infiltration and Infiltration Characteristic Times</title><source>Wiley Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley-Blackwell AGU Digital Library</source><creator>Rahmati, Mehdi ; Latorre, Borja ; Moret‐Fernández, David ; Lassabatere, Laurent ; Talebian, Nima ; Miller, Dane ; Morbidelli, Renato ; Iovino, Massimo ; Bagarello, Vincenzo ; Neyshabouri, Mohammad Reza ; Zhao, Ying ; Vanderborght, Jan ; Weihermüller, Lutz ; Jaramillo, Rafael Angulo ; Or, Dani ; Th. van Genuchten, Martinus ; Vereecken, Harry</creator><creatorcontrib>Rahmati, Mehdi ; Latorre, Borja ; Moret‐Fernández, David ; Lassabatere, Laurent ; Talebian, Nima ; Miller, Dane ; Morbidelli, Renato ; Iovino, Massimo ; Bagarello, Vincenzo ; Neyshabouri, Mohammad Reza ; Zhao, Ying ; Vanderborght, Jan ; Weihermüller, Lutz ; Jaramillo, Rafael Angulo ; Or, Dani ; Th. van Genuchten, Martinus ; Vereecken, Harry</creatorcontrib><description>In his seminal paper on the solution of the infiltration equation, Philip (1969), https://doi.org/10.1016/b978-1-4831-9936-8.50010-6 proposed a gravity time, tgrav, to estimate practical convergence time and the time domain validity of his infinite time series expansion, TSE, for describing the transient state. The parameter tgrav refers to a point in time where infiltration is dominated equally by capillarity and gravity as derived from the first two (dominant) terms of the TSE. Evidence suggests that applicability of the truncated two‐term equation of Philip has a time limit requiring higher‐order TSE terms to better describe the infiltration process for times exceeding that limit. Since the conceptual definition of tgrav is valid regardless of the infiltration model used, we opted to reformulate tgrav using the analytic implicit model proposed by Parlange et al. (1982), https://doi.org/10.1097/00010694-198206000-00001 valid for all times and related TSE. Our derived gravity times ensure a given accuracy of the approximations describing transient states, while also providing insight about the times needed to reach steady state. In addition to the roles of soil sorptivity (S) and the saturated (Ks) and initial (Ki) hydraulic conductivities, we explored the effects of a soil specific shape parameter β, involved in Parlange's model and related to the type of soil, on the behavior of tgrav. We show that the reformulated tgrav (notably tgrav=F(β)S2/Ks−Ki2, ${t}_{\text{grav}}=\,F(\beta ){S}^{2}/{\left({K}_{s}-{K}_{i}\right)}^{2},$ where F(β) is a β‐dependent function) is about three times larger than the classical tgrav given by tgrav,Philip=S2/Ks−Ki2 $\,{t}_{\text{grav},\text{Philip}}={S}^{2}/{\left({K}_{s}-{K}_{i}\right)}^{2}$. The differences between the classical tgrav,Philip and the reformulated tgrav increase for fine‐textured soils, attributed to the time needed to attain steady‐state infiltration and thus i + nfiltration for inferring soil hydraulic properties. Results show that the proposed tgrav is a better indicator of time domain validity than tgrav,Philip. For the attainment of steady‐state infiltration, the reformulated tgrav is suitable for coarse‐textured soils. Still neither the reformulated tgrav nor the classical tgrav,Philip are suitable for fine‐textured soils for which tgrav is too conservative and tgrav,Philip too short. Using tgrav will improve predictions of the soil hydraulic parameters (particularly Ks) from infiltration data compared to tgrav,Philip.
Key Points
A new formulation for infiltration characteristic time, tgrav, is provided
The reformulated tgrav seems to be a better criterion for convergence time of Philip's truncated infiltration equations
The usage of reformulated tgrav improves predictions of soil hydraulic parameters</description><identifier>ISSN: 0043-1397</identifier><identifier>EISSN: 1944-7973</identifier><identifier>DOI: 10.1029/2021WR031600</identifier><language>eng</language><publisher>Washington: John Wiley & Sons, Inc</publisher><subject>Capillarity ; Environmental Sciences ; Gravity ; hydraulic conductivity ; Hydraulic properties ; Hydraulics ; Infiltration ; Mathematical models ; Parameters ; Series expansion ; Soil ; Soil properties ; Soil texture ; Soil types ; Soils ; sorptivity ; steady state ; Time domain analysis ; time domain validity</subject><ispartof>Water resources research, 2022-05, Vol.58 (5), p.215-n/a</ispartof><rights>2022. The Authors.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3179-42367c914d74043caf19e46caadb37943812525017bd0b0a737b9a892c1ff93d3</citedby><cites>FETCH-LOGICAL-a3179-42367c914d74043caf19e46caadb37943812525017bd0b0a737b9a892c1ff93d3</cites><orcidid>0000-0001-5547-6442 ; 0000-0003-3220-0835 ; 0000-0003-0346-5631 ; 0000-0003-1654-8858 ; 0000-0001-7381-3211 ; 0000-0002-3454-2030 ; 0000-0003-3575-549X ; 0000-0003-1991-7735 ; 0000-0002-3236-2933 ; 0000-0002-8051-8517 ; 0000-0001-8388-2149 ; 0000-0002-8625-5455</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2021WR031600$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2021WR031600$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,11514,27924,27925,45574,45575,46468,46892</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03830339$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Rahmati, Mehdi</creatorcontrib><creatorcontrib>Latorre, Borja</creatorcontrib><creatorcontrib>Moret‐Fernández, David</creatorcontrib><creatorcontrib>Lassabatere, Laurent</creatorcontrib><creatorcontrib>Talebian, Nima</creatorcontrib><creatorcontrib>Miller, Dane</creatorcontrib><creatorcontrib>Morbidelli, Renato</creatorcontrib><creatorcontrib>Iovino, Massimo</creatorcontrib><creatorcontrib>Bagarello, Vincenzo</creatorcontrib><creatorcontrib>Neyshabouri, Mohammad Reza</creatorcontrib><creatorcontrib>Zhao, Ying</creatorcontrib><creatorcontrib>Vanderborght, Jan</creatorcontrib><creatorcontrib>Weihermüller, Lutz</creatorcontrib><creatorcontrib>Jaramillo, Rafael Angulo</creatorcontrib><creatorcontrib>Or, Dani</creatorcontrib><creatorcontrib>Th. van Genuchten, Martinus</creatorcontrib><creatorcontrib>Vereecken, Harry</creatorcontrib><title>On Infiltration and Infiltration Characteristic Times</title><title>Water resources research</title><description>In his seminal paper on the solution of the infiltration equation, Philip (1969), https://doi.org/10.1016/b978-1-4831-9936-8.50010-6 proposed a gravity time, tgrav, to estimate practical convergence time and the time domain validity of his infinite time series expansion, TSE, for describing the transient state. The parameter tgrav refers to a point in time where infiltration is dominated equally by capillarity and gravity as derived from the first two (dominant) terms of the TSE. Evidence suggests that applicability of the truncated two‐term equation of Philip has a time limit requiring higher‐order TSE terms to better describe the infiltration process for times exceeding that limit. Since the conceptual definition of tgrav is valid regardless of the infiltration model used, we opted to reformulate tgrav using the analytic implicit model proposed by Parlange et al. (1982), https://doi.org/10.1097/00010694-198206000-00001 valid for all times and related TSE. Our derived gravity times ensure a given accuracy of the approximations describing transient states, while also providing insight about the times needed to reach steady state. In addition to the roles of soil sorptivity (S) and the saturated (Ks) and initial (Ki) hydraulic conductivities, we explored the effects of a soil specific shape parameter β, involved in Parlange's model and related to the type of soil, on the behavior of tgrav. We show that the reformulated tgrav (notably tgrav=F(β)S2/Ks−Ki2, ${t}_{\text{grav}}=\,F(\beta ){S}^{2}/{\left({K}_{s}-{K}_{i}\right)}^{2},$ where F(β) is a β‐dependent function) is about three times larger than the classical tgrav given by tgrav,Philip=S2/Ks−Ki2 $\,{t}_{\text{grav},\text{Philip}}={S}^{2}/{\left({K}_{s}-{K}_{i}\right)}^{2}$. The differences between the classical tgrav,Philip and the reformulated tgrav increase for fine‐textured soils, attributed to the time needed to attain steady‐state infiltration and thus i + nfiltration for inferring soil hydraulic properties. Results show that the proposed tgrav is a better indicator of time domain validity than tgrav,Philip. For the attainment of steady‐state infiltration, the reformulated tgrav is suitable for coarse‐textured soils. Still neither the reformulated tgrav nor the classical tgrav,Philip are suitable for fine‐textured soils for which tgrav is too conservative and tgrav,Philip too short. Using tgrav will improve predictions of the soil hydraulic parameters (particularly Ks) from infiltration data compared to tgrav,Philip.
Key Points
A new formulation for infiltration characteristic time, tgrav, is provided
The reformulated tgrav seems to be a better criterion for convergence time of Philip's truncated infiltration equations
The usage of reformulated tgrav improves predictions of soil hydraulic parameters</description><subject>Capillarity</subject><subject>Environmental Sciences</subject><subject>Gravity</subject><subject>hydraulic conductivity</subject><subject>Hydraulic properties</subject><subject>Hydraulics</subject><subject>Infiltration</subject><subject>Mathematical models</subject><subject>Parameters</subject><subject>Series expansion</subject><subject>Soil</subject><subject>Soil properties</subject><subject>Soil texture</subject><subject>Soil types</subject><subject>Soils</subject><subject>sorptivity</subject><subject>steady state</subject><subject>Time domain analysis</subject><subject>time domain validity</subject><issn>0043-1397</issn><issn>1944-7973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp90E1Lw0AQBuBFFKzVmz-g4EkwOrOzyWaPJagtBAql0uOy-aJb0qTupkr_vSkR0YunGYaHmeFl7BbhEYGrJw4c10sgjADO2AiVEIFUks7ZCEBQgKTkJbvyfguAIozkiIWLZjJvKlt3znS2bSamKf4Oko1xJu9KZ31n88nK7kp_zS4qU_vy5ruO2dvL8yqZBenidZ5M08AQShUITpHMFYpCiv5-bipUpYhyY4qMpBIUIw95CCizAjIwkmSmTKx4jlWlqKAxux_2bkyt987ujDvq1lg9m6b6NAOKCYjUB_b2brB7174fSt_pbXtwTf-e5lGkQpKxDHv1MKjctd67svpZi6BPIerfIfacBv5p6_L4r9XrZbLkfaPoCzNlcA4</recordid><startdate>202205</startdate><enddate>202205</enddate><creator>Rahmati, Mehdi</creator><creator>Latorre, Borja</creator><creator>Moret‐Fernández, David</creator><creator>Lassabatere, Laurent</creator><creator>Talebian, Nima</creator><creator>Miller, Dane</creator><creator>Morbidelli, Renato</creator><creator>Iovino, Massimo</creator><creator>Bagarello, Vincenzo</creator><creator>Neyshabouri, Mohammad Reza</creator><creator>Zhao, Ying</creator><creator>Vanderborght, Jan</creator><creator>Weihermüller, Lutz</creator><creator>Jaramillo, Rafael Angulo</creator><creator>Or, Dani</creator><creator>Th. van Genuchten, Martinus</creator><creator>Vereecken, Harry</creator><general>John Wiley & Sons, Inc</general><general>American Geophysical Union</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7T7</scope><scope>7TG</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-5547-6442</orcidid><orcidid>https://orcid.org/0000-0003-3220-0835</orcidid><orcidid>https://orcid.org/0000-0003-0346-5631</orcidid><orcidid>https://orcid.org/0000-0003-1654-8858</orcidid><orcidid>https://orcid.org/0000-0001-7381-3211</orcidid><orcidid>https://orcid.org/0000-0002-3454-2030</orcidid><orcidid>https://orcid.org/0000-0003-3575-549X</orcidid><orcidid>https://orcid.org/0000-0003-1991-7735</orcidid><orcidid>https://orcid.org/0000-0002-3236-2933</orcidid><orcidid>https://orcid.org/0000-0002-8051-8517</orcidid><orcidid>https://orcid.org/0000-0001-8388-2149</orcidid><orcidid>https://orcid.org/0000-0002-8625-5455</orcidid></search><sort><creationdate>202205</creationdate><title>On Infiltration and Infiltration Characteristic Times</title><author>Rahmati, Mehdi ; Latorre, Borja ; Moret‐Fernández, David ; Lassabatere, Laurent ; Talebian, Nima ; Miller, Dane ; Morbidelli, Renato ; Iovino, Massimo ; Bagarello, Vincenzo ; Neyshabouri, Mohammad Reza ; Zhao, Ying ; Vanderborght, Jan ; Weihermüller, Lutz ; Jaramillo, Rafael Angulo ; Or, Dani ; Th. van Genuchten, Martinus ; Vereecken, Harry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3179-42367c914d74043caf19e46caadb37943812525017bd0b0a737b9a892c1ff93d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Capillarity</topic><topic>Environmental Sciences</topic><topic>Gravity</topic><topic>hydraulic conductivity</topic><topic>Hydraulic properties</topic><topic>Hydraulics</topic><topic>Infiltration</topic><topic>Mathematical models</topic><topic>Parameters</topic><topic>Series expansion</topic><topic>Soil</topic><topic>Soil properties</topic><topic>Soil texture</topic><topic>Soil types</topic><topic>Soils</topic><topic>sorptivity</topic><topic>steady state</topic><topic>Time domain analysis</topic><topic>time domain validity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rahmati, Mehdi</creatorcontrib><creatorcontrib>Latorre, Borja</creatorcontrib><creatorcontrib>Moret‐Fernández, David</creatorcontrib><creatorcontrib>Lassabatere, Laurent</creatorcontrib><creatorcontrib>Talebian, Nima</creatorcontrib><creatorcontrib>Miller, Dane</creatorcontrib><creatorcontrib>Morbidelli, Renato</creatorcontrib><creatorcontrib>Iovino, Massimo</creatorcontrib><creatorcontrib>Bagarello, Vincenzo</creatorcontrib><creatorcontrib>Neyshabouri, Mohammad Reza</creatorcontrib><creatorcontrib>Zhao, Ying</creatorcontrib><creatorcontrib>Vanderborght, Jan</creatorcontrib><creatorcontrib>Weihermüller, Lutz</creatorcontrib><creatorcontrib>Jaramillo, Rafael Angulo</creatorcontrib><creatorcontrib>Or, Dani</creatorcontrib><creatorcontrib>Th. van Genuchten, Martinus</creatorcontrib><creatorcontrib>Vereecken, Harry</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Water resources research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rahmati, Mehdi</au><au>Latorre, Borja</au><au>Moret‐Fernández, David</au><au>Lassabatere, Laurent</au><au>Talebian, Nima</au><au>Miller, Dane</au><au>Morbidelli, Renato</au><au>Iovino, Massimo</au><au>Bagarello, Vincenzo</au><au>Neyshabouri, Mohammad Reza</au><au>Zhao, Ying</au><au>Vanderborght, Jan</au><au>Weihermüller, Lutz</au><au>Jaramillo, Rafael Angulo</au><au>Or, Dani</au><au>Th. van Genuchten, Martinus</au><au>Vereecken, Harry</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Infiltration and Infiltration Characteristic Times</atitle><jtitle>Water resources research</jtitle><date>2022-05</date><risdate>2022</risdate><volume>58</volume><issue>5</issue><spage>215</spage><epage>n/a</epage><pages>215-n/a</pages><issn>0043-1397</issn><eissn>1944-7973</eissn><abstract>In his seminal paper on the solution of the infiltration equation, Philip (1969), https://doi.org/10.1016/b978-1-4831-9936-8.50010-6 proposed a gravity time, tgrav, to estimate practical convergence time and the time domain validity of his infinite time series expansion, TSE, for describing the transient state. The parameter tgrav refers to a point in time where infiltration is dominated equally by capillarity and gravity as derived from the first two (dominant) terms of the TSE. Evidence suggests that applicability of the truncated two‐term equation of Philip has a time limit requiring higher‐order TSE terms to better describe the infiltration process for times exceeding that limit. Since the conceptual definition of tgrav is valid regardless of the infiltration model used, we opted to reformulate tgrav using the analytic implicit model proposed by Parlange et al. (1982), https://doi.org/10.1097/00010694-198206000-00001 valid for all times and related TSE. Our derived gravity times ensure a given accuracy of the approximations describing transient states, while also providing insight about the times needed to reach steady state. In addition to the roles of soil sorptivity (S) and the saturated (Ks) and initial (Ki) hydraulic conductivities, we explored the effects of a soil specific shape parameter β, involved in Parlange's model and related to the type of soil, on the behavior of tgrav. We show that the reformulated tgrav (notably tgrav=F(β)S2/Ks−Ki2, ${t}_{\text{grav}}=\,F(\beta ){S}^{2}/{\left({K}_{s}-{K}_{i}\right)}^{2},$ where F(β) is a β‐dependent function) is about three times larger than the classical tgrav given by tgrav,Philip=S2/Ks−Ki2 $\,{t}_{\text{grav},\text{Philip}}={S}^{2}/{\left({K}_{s}-{K}_{i}\right)}^{2}$. The differences between the classical tgrav,Philip and the reformulated tgrav increase for fine‐textured soils, attributed to the time needed to attain steady‐state infiltration and thus i + nfiltration for inferring soil hydraulic properties. Results show that the proposed tgrav is a better indicator of time domain validity than tgrav,Philip. For the attainment of steady‐state infiltration, the reformulated tgrav is suitable for coarse‐textured soils. Still neither the reformulated tgrav nor the classical tgrav,Philip are suitable for fine‐textured soils for which tgrav is too conservative and tgrav,Philip too short. Using tgrav will improve predictions of the soil hydraulic parameters (particularly Ks) from infiltration data compared to tgrav,Philip.
Key Points
A new formulation for infiltration characteristic time, tgrav, is provided
The reformulated tgrav seems to be a better criterion for convergence time of Philip's truncated infiltration equations
The usage of reformulated tgrav improves predictions of soil hydraulic parameters</abstract><cop>Washington</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1029/2021WR031600</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-5547-6442</orcidid><orcidid>https://orcid.org/0000-0003-3220-0835</orcidid><orcidid>https://orcid.org/0000-0003-0346-5631</orcidid><orcidid>https://orcid.org/0000-0003-1654-8858</orcidid><orcidid>https://orcid.org/0000-0001-7381-3211</orcidid><orcidid>https://orcid.org/0000-0002-3454-2030</orcidid><orcidid>https://orcid.org/0000-0003-3575-549X</orcidid><orcidid>https://orcid.org/0000-0003-1991-7735</orcidid><orcidid>https://orcid.org/0000-0002-3236-2933</orcidid><orcidid>https://orcid.org/0000-0002-8051-8517</orcidid><orcidid>https://orcid.org/0000-0001-8388-2149</orcidid><orcidid>https://orcid.org/0000-0002-8625-5455</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0043-1397 |
ispartof | Water resources research, 2022-05, Vol.58 (5), p.215-n/a |
issn | 0043-1397 1944-7973 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03830339v1 |
source | Wiley Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley-Blackwell AGU Digital Library |
subjects | Capillarity Environmental Sciences Gravity hydraulic conductivity Hydraulic properties Hydraulics Infiltration Mathematical models Parameters Series expansion Soil Soil properties Soil texture Soil types Soils sorptivity steady state Time domain analysis time domain validity |
title | On Infiltration and Infiltration Characteristic Times |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A51%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Infiltration%20and%20Infiltration%20Characteristic%20Times&rft.jtitle=Water%20resources%20research&rft.au=Rahmati,%20Mehdi&rft.date=2022-05&rft.volume=58&rft.issue=5&rft.spage=215&rft.epage=n/a&rft.pages=215-n/a&rft.issn=0043-1397&rft.eissn=1944-7973&rft_id=info:doi/10.1029/2021WR031600&rft_dat=%3Cproquest_hal_p%3E2669537875%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2669537875&rft_id=info:pmid/&rfr_iscdi=true |