Identification of a second 16-hydroxytabersonine-O-methyltransferase suggests an evolutionary relationship between alkaloid and flavonoid metabolisms in Catharanthus roseus

The medicinal plant Catharanthus roseus biosynthesizes many important drugs for human health, including the anticancer monoterpene indole alkaloids (MIAs) vinblastine and vincristine. Over the past decades, the continuous increase in pharmaceutical demand has prompted several research groups to char...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Protoplasma 2023-03, Vol.260 (2), p.607-624
Hauptverfasser: Lemos Cruz, Pamela, Carqueijeiro, Ines, Koudounas, Konstantinos, Bomzan, Dikki Pedenla, Stander, Emily Amor, Abdallah, Cécile, Kulagina, Natalja, Oudin, Audrey, Lanoue, Arnaud, Giglioli-Guivarc’h, Nathalie, Nagegowda, Dinesh A, Papon, Nicolas, Besseau, Sébastien, Clastre, Marc, Courdavault, Vincent
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 624
container_issue 2
container_start_page 607
container_title Protoplasma
container_volume 260
creator Lemos Cruz, Pamela
Carqueijeiro, Ines
Koudounas, Konstantinos
Bomzan, Dikki Pedenla
Stander, Emily Amor
Abdallah, Cécile
Kulagina, Natalja
Oudin, Audrey
Lanoue, Arnaud
Giglioli-Guivarc’h, Nathalie
Nagegowda, Dinesh A
Papon, Nicolas
Besseau, Sébastien
Clastre, Marc
Courdavault, Vincent
description The medicinal plant Catharanthus roseus biosynthesizes many important drugs for human health, including the anticancer monoterpene indole alkaloids (MIAs) vinblastine and vincristine. Over the past decades, the continuous increase in pharmaceutical demand has prompted several research groups to characterize MIA biosynthetic pathways for considering future metabolic engineering processes of supply. In line with previous work suggesting that diversification can potentially occur at various steps along the vindoline branch, we were here interested in investigating the involvement of distinct isoforms of tabersonine-16- O -methyltransferase (16OMT) which plays a pivotal role in the MIA biosynthetic pathway. By combining homology searches based on the previously characterized 16OMT1, phylogenetic analyses, functional assays in yeast, and biochemical and in planta characterizations, we identified a second isoform of 16OMT, referred to as 16OMT2. 16OMT2 appears to be a multifunctional enzyme working on both MIA and flavonoid substrates, suggesting that a constrained evolution of the enzyme for accommodating the MIA substrate has probably occurred to favor the apparition of 16OMT2 from an ancestral specific flavonoid- O -methyltransferase. Since 16OMT1 and 16OMT2 displays a high sequence identity and similar kinetic parameters for 16-hydroxytabersonine, we postulate that 16OMT1 may result from a later 16OMT2 gene duplication accompanied by a continuous neofunctionalization leading to an almost complete loss of flavonoid O -methyltransferase activity. Overall, these results participate in increasing our knowledge on the evolutionary processes that have likely led to enzyme co-optation for MIA synthesis.
doi_str_mv 10.1007/s00709-022-01801-x
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03826728v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2776868063</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-192b863245ff5b5a3d7d5a62d889e567e6f804a39fd47b357b2fa6fcab33a5d13</originalsourceid><addsrcrecordid>eNp9kc1uEzEUhUcIREPhBVggS2xgYfDP2DOzrCJoK0XqBiR21p2xnXFx7GDPpMk78ZB1mlIkFmxs-fq75_r4VNVbSj5RQprPuSykw4QxTGhLKN4_qxZUUoElJex5tSCEc0xb_uOsepXzLSFEMCJeVmdcdHXDKF9Uv6-1CZOzboDJxYCiRYCyGWLQiEo8HnSK-8MEvUk5BhcMvsEbM40HPyUI2ZoE2aA8r9cmTxlBQGYX_XzUgnRAyfgH3Ty6LerNdGdMQOB_go9OF1oj62EXw_FUZKGP3uVNRi6gJUwjlBnTOGeUYjZzfl29sOCzefO4n1ffv375trzCq5vL6-XFCg816SZMO9a3krNaWCt6AVw3WoBkum07I2RjpG1JDbyzum56LpqeWZB2gJ5zEJry8-rjSXcEr7bJbYoVFcGpq4uVOtYIb5lsWLs7sh9O7DbFX3P5BLVxeTDeQzBxzoo1hEjeSVoX9P0_6G2cUyhOCtXIVraFLBQ7UUMxnZOxTy-gRB1zV6fcVcldPeSu9qXp3aP03G-Mfmr5E3QB-AnI5SqsTfo7-z-y94R5vUg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2776868063</pqid></control><display><type>article</type><title>Identification of a second 16-hydroxytabersonine-O-methyltransferase suggests an evolutionary relationship between alkaloid and flavonoid metabolisms in Catharanthus roseus</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Lemos Cruz, Pamela ; Carqueijeiro, Ines ; Koudounas, Konstantinos ; Bomzan, Dikki Pedenla ; Stander, Emily Amor ; Abdallah, Cécile ; Kulagina, Natalja ; Oudin, Audrey ; Lanoue, Arnaud ; Giglioli-Guivarc’h, Nathalie ; Nagegowda, Dinesh A ; Papon, Nicolas ; Besseau, Sébastien ; Clastre, Marc ; Courdavault, Vincent</creator><creatorcontrib>Lemos Cruz, Pamela ; Carqueijeiro, Ines ; Koudounas, Konstantinos ; Bomzan, Dikki Pedenla ; Stander, Emily Amor ; Abdallah, Cécile ; Kulagina, Natalja ; Oudin, Audrey ; Lanoue, Arnaud ; Giglioli-Guivarc’h, Nathalie ; Nagegowda, Dinesh A ; Papon, Nicolas ; Besseau, Sébastien ; Clastre, Marc ; Courdavault, Vincent</creatorcontrib><description>The medicinal plant Catharanthus roseus biosynthesizes many important drugs for human health, including the anticancer monoterpene indole alkaloids (MIAs) vinblastine and vincristine. Over the past decades, the continuous increase in pharmaceutical demand has prompted several research groups to characterize MIA biosynthetic pathways for considering future metabolic engineering processes of supply. In line with previous work suggesting that diversification can potentially occur at various steps along the vindoline branch, we were here interested in investigating the involvement of distinct isoforms of tabersonine-16- O -methyltransferase (16OMT) which plays a pivotal role in the MIA biosynthetic pathway. By combining homology searches based on the previously characterized 16OMT1, phylogenetic analyses, functional assays in yeast, and biochemical and in planta characterizations, we identified a second isoform of 16OMT, referred to as 16OMT2. 16OMT2 appears to be a multifunctional enzyme working on both MIA and flavonoid substrates, suggesting that a constrained evolution of the enzyme for accommodating the MIA substrate has probably occurred to favor the apparition of 16OMT2 from an ancestral specific flavonoid- O -methyltransferase. Since 16OMT1 and 16OMT2 displays a high sequence identity and similar kinetic parameters for 16-hydroxytabersonine, we postulate that 16OMT1 may result from a later 16OMT2 gene duplication accompanied by a continuous neofunctionalization leading to an almost complete loss of flavonoid O -methyltransferase activity. Overall, these results participate in increasing our knowledge on the evolutionary processes that have likely led to enzyme co-optation for MIA synthesis.</description><identifier>ISSN: 0033-183X</identifier><identifier>EISSN: 1615-6102</identifier><identifier>DOI: 10.1007/s00709-022-01801-x</identifier><identifier>PMID: 35947213</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Alkaloids ; Alkaloids - metabolism ; Antineoplastic Agents ; Biomedical and Life Sciences ; Catharanthus ; Catharanthus roseus ; Cell Biology ; Enzymes ; Evolution ; Flavonoids ; Gene duplication ; Gene Expression Regulation, Plant ; Homology ; Isoforms ; Life Sciences ; Medicinal plants ; Metabolic engineering ; Methyltransferase ; Methyltransferases - genetics ; Methyltransferases - metabolism ; Original Article ; Phylogeny ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plant Sciences ; Protein Isoforms - genetics ; Vinblastine ; Vincristine ; Vindoline ; Zoology</subject><ispartof>Protoplasma, 2023-03, Vol.260 (2), p.607-624</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-192b863245ff5b5a3d7d5a62d889e567e6f804a39fd47b357b2fa6fcab33a5d13</citedby><cites>FETCH-LOGICAL-c409t-192b863245ff5b5a3d7d5a62d889e567e6f804a39fd47b357b2fa6fcab33a5d13</cites><orcidid>0000-0001-8902-4532 ; 0000-0003-4261-5137</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00709-022-01801-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00709-022-01801-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35947213$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://univ-angers.hal.science/hal-03826728$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lemos Cruz, Pamela</creatorcontrib><creatorcontrib>Carqueijeiro, Ines</creatorcontrib><creatorcontrib>Koudounas, Konstantinos</creatorcontrib><creatorcontrib>Bomzan, Dikki Pedenla</creatorcontrib><creatorcontrib>Stander, Emily Amor</creatorcontrib><creatorcontrib>Abdallah, Cécile</creatorcontrib><creatorcontrib>Kulagina, Natalja</creatorcontrib><creatorcontrib>Oudin, Audrey</creatorcontrib><creatorcontrib>Lanoue, Arnaud</creatorcontrib><creatorcontrib>Giglioli-Guivarc’h, Nathalie</creatorcontrib><creatorcontrib>Nagegowda, Dinesh A</creatorcontrib><creatorcontrib>Papon, Nicolas</creatorcontrib><creatorcontrib>Besseau, Sébastien</creatorcontrib><creatorcontrib>Clastre, Marc</creatorcontrib><creatorcontrib>Courdavault, Vincent</creatorcontrib><title>Identification of a second 16-hydroxytabersonine-O-methyltransferase suggests an evolutionary relationship between alkaloid and flavonoid metabolisms in Catharanthus roseus</title><title>Protoplasma</title><addtitle>Protoplasma</addtitle><addtitle>Protoplasma</addtitle><description>The medicinal plant Catharanthus roseus biosynthesizes many important drugs for human health, including the anticancer monoterpene indole alkaloids (MIAs) vinblastine and vincristine. Over the past decades, the continuous increase in pharmaceutical demand has prompted several research groups to characterize MIA biosynthetic pathways for considering future metabolic engineering processes of supply. In line with previous work suggesting that diversification can potentially occur at various steps along the vindoline branch, we were here interested in investigating the involvement of distinct isoforms of tabersonine-16- O -methyltransferase (16OMT) which plays a pivotal role in the MIA biosynthetic pathway. By combining homology searches based on the previously characterized 16OMT1, phylogenetic analyses, functional assays in yeast, and biochemical and in planta characterizations, we identified a second isoform of 16OMT, referred to as 16OMT2. 16OMT2 appears to be a multifunctional enzyme working on both MIA and flavonoid substrates, suggesting that a constrained evolution of the enzyme for accommodating the MIA substrate has probably occurred to favor the apparition of 16OMT2 from an ancestral specific flavonoid- O -methyltransferase. Since 16OMT1 and 16OMT2 displays a high sequence identity and similar kinetic parameters for 16-hydroxytabersonine, we postulate that 16OMT1 may result from a later 16OMT2 gene duplication accompanied by a continuous neofunctionalization leading to an almost complete loss of flavonoid O -methyltransferase activity. Overall, these results participate in increasing our knowledge on the evolutionary processes that have likely led to enzyme co-optation for MIA synthesis.</description><subject>Alkaloids</subject><subject>Alkaloids - metabolism</subject><subject>Antineoplastic Agents</subject><subject>Biomedical and Life Sciences</subject><subject>Catharanthus</subject><subject>Catharanthus roseus</subject><subject>Cell Biology</subject><subject>Enzymes</subject><subject>Evolution</subject><subject>Flavonoids</subject><subject>Gene duplication</subject><subject>Gene Expression Regulation, Plant</subject><subject>Homology</subject><subject>Isoforms</subject><subject>Life Sciences</subject><subject>Medicinal plants</subject><subject>Metabolic engineering</subject><subject>Methyltransferase</subject><subject>Methyltransferases - genetics</subject><subject>Methyltransferases - metabolism</subject><subject>Original Article</subject><subject>Phylogeny</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plant Sciences</subject><subject>Protein Isoforms - genetics</subject><subject>Vinblastine</subject><subject>Vincristine</subject><subject>Vindoline</subject><subject>Zoology</subject><issn>0033-183X</issn><issn>1615-6102</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kc1uEzEUhUcIREPhBVggS2xgYfDP2DOzrCJoK0XqBiR21p2xnXFx7GDPpMk78ZB1mlIkFmxs-fq75_r4VNVbSj5RQprPuSykw4QxTGhLKN4_qxZUUoElJex5tSCEc0xb_uOsepXzLSFEMCJeVmdcdHXDKF9Uv6-1CZOzboDJxYCiRYCyGWLQiEo8HnSK-8MEvUk5BhcMvsEbM40HPyUI2ZoE2aA8r9cmTxlBQGYX_XzUgnRAyfgH3Ty6LerNdGdMQOB_go9OF1oj62EXw_FUZKGP3uVNRi6gJUwjlBnTOGeUYjZzfl29sOCzefO4n1ffv375trzCq5vL6-XFCg816SZMO9a3krNaWCt6AVw3WoBkum07I2RjpG1JDbyzum56LpqeWZB2gJ5zEJry8-rjSXcEr7bJbYoVFcGpq4uVOtYIb5lsWLs7sh9O7DbFX3P5BLVxeTDeQzBxzoo1hEjeSVoX9P0_6G2cUyhOCtXIVraFLBQ7UUMxnZOxTy-gRB1zV6fcVcldPeSu9qXp3aP03G-Mfmr5E3QB-AnI5SqsTfo7-z-y94R5vUg</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Lemos Cruz, Pamela</creator><creator>Carqueijeiro, Ines</creator><creator>Koudounas, Konstantinos</creator><creator>Bomzan, Dikki Pedenla</creator><creator>Stander, Emily Amor</creator><creator>Abdallah, Cécile</creator><creator>Kulagina, Natalja</creator><creator>Oudin, Audrey</creator><creator>Lanoue, Arnaud</creator><creator>Giglioli-Guivarc’h, Nathalie</creator><creator>Nagegowda, Dinesh A</creator><creator>Papon, Nicolas</creator><creator>Besseau, Sébastien</creator><creator>Clastre, Marc</creator><creator>Courdavault, Vincent</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-8902-4532</orcidid><orcidid>https://orcid.org/0000-0003-4261-5137</orcidid></search><sort><creationdate>20230301</creationdate><title>Identification of a second 16-hydroxytabersonine-O-methyltransferase suggests an evolutionary relationship between alkaloid and flavonoid metabolisms in Catharanthus roseus</title><author>Lemos Cruz, Pamela ; Carqueijeiro, Ines ; Koudounas, Konstantinos ; Bomzan, Dikki Pedenla ; Stander, Emily Amor ; Abdallah, Cécile ; Kulagina, Natalja ; Oudin, Audrey ; Lanoue, Arnaud ; Giglioli-Guivarc’h, Nathalie ; Nagegowda, Dinesh A ; Papon, Nicolas ; Besseau, Sébastien ; Clastre, Marc ; Courdavault, Vincent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-192b863245ff5b5a3d7d5a62d889e567e6f804a39fd47b357b2fa6fcab33a5d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alkaloids</topic><topic>Alkaloids - metabolism</topic><topic>Antineoplastic Agents</topic><topic>Biomedical and Life Sciences</topic><topic>Catharanthus</topic><topic>Catharanthus roseus</topic><topic>Cell Biology</topic><topic>Enzymes</topic><topic>Evolution</topic><topic>Flavonoids</topic><topic>Gene duplication</topic><topic>Gene Expression Regulation, Plant</topic><topic>Homology</topic><topic>Isoforms</topic><topic>Life Sciences</topic><topic>Medicinal plants</topic><topic>Metabolic engineering</topic><topic>Methyltransferase</topic><topic>Methyltransferases - genetics</topic><topic>Methyltransferases - metabolism</topic><topic>Original Article</topic><topic>Phylogeny</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plant Sciences</topic><topic>Protein Isoforms - genetics</topic><topic>Vinblastine</topic><topic>Vincristine</topic><topic>Vindoline</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lemos Cruz, Pamela</creatorcontrib><creatorcontrib>Carqueijeiro, Ines</creatorcontrib><creatorcontrib>Koudounas, Konstantinos</creatorcontrib><creatorcontrib>Bomzan, Dikki Pedenla</creatorcontrib><creatorcontrib>Stander, Emily Amor</creatorcontrib><creatorcontrib>Abdallah, Cécile</creatorcontrib><creatorcontrib>Kulagina, Natalja</creatorcontrib><creatorcontrib>Oudin, Audrey</creatorcontrib><creatorcontrib>Lanoue, Arnaud</creatorcontrib><creatorcontrib>Giglioli-Guivarc’h, Nathalie</creatorcontrib><creatorcontrib>Nagegowda, Dinesh A</creatorcontrib><creatorcontrib>Papon, Nicolas</creatorcontrib><creatorcontrib>Besseau, Sébastien</creatorcontrib><creatorcontrib>Clastre, Marc</creatorcontrib><creatorcontrib>Courdavault, Vincent</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Protoplasma</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lemos Cruz, Pamela</au><au>Carqueijeiro, Ines</au><au>Koudounas, Konstantinos</au><au>Bomzan, Dikki Pedenla</au><au>Stander, Emily Amor</au><au>Abdallah, Cécile</au><au>Kulagina, Natalja</au><au>Oudin, Audrey</au><au>Lanoue, Arnaud</au><au>Giglioli-Guivarc’h, Nathalie</au><au>Nagegowda, Dinesh A</au><au>Papon, Nicolas</au><au>Besseau, Sébastien</au><au>Clastre, Marc</au><au>Courdavault, Vincent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of a second 16-hydroxytabersonine-O-methyltransferase suggests an evolutionary relationship between alkaloid and flavonoid metabolisms in Catharanthus roseus</atitle><jtitle>Protoplasma</jtitle><stitle>Protoplasma</stitle><addtitle>Protoplasma</addtitle><date>2023-03-01</date><risdate>2023</risdate><volume>260</volume><issue>2</issue><spage>607</spage><epage>624</epage><pages>607-624</pages><issn>0033-183X</issn><eissn>1615-6102</eissn><abstract>The medicinal plant Catharanthus roseus biosynthesizes many important drugs for human health, including the anticancer monoterpene indole alkaloids (MIAs) vinblastine and vincristine. Over the past decades, the continuous increase in pharmaceutical demand has prompted several research groups to characterize MIA biosynthetic pathways for considering future metabolic engineering processes of supply. In line with previous work suggesting that diversification can potentially occur at various steps along the vindoline branch, we were here interested in investigating the involvement of distinct isoforms of tabersonine-16- O -methyltransferase (16OMT) which plays a pivotal role in the MIA biosynthetic pathway. By combining homology searches based on the previously characterized 16OMT1, phylogenetic analyses, functional assays in yeast, and biochemical and in planta characterizations, we identified a second isoform of 16OMT, referred to as 16OMT2. 16OMT2 appears to be a multifunctional enzyme working on both MIA and flavonoid substrates, suggesting that a constrained evolution of the enzyme for accommodating the MIA substrate has probably occurred to favor the apparition of 16OMT2 from an ancestral specific flavonoid- O -methyltransferase. Since 16OMT1 and 16OMT2 displays a high sequence identity and similar kinetic parameters for 16-hydroxytabersonine, we postulate that 16OMT1 may result from a later 16OMT2 gene duplication accompanied by a continuous neofunctionalization leading to an almost complete loss of flavonoid O -methyltransferase activity. Overall, these results participate in increasing our knowledge on the evolutionary processes that have likely led to enzyme co-optation for MIA synthesis.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><pmid>35947213</pmid><doi>10.1007/s00709-022-01801-x</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-8902-4532</orcidid><orcidid>https://orcid.org/0000-0003-4261-5137</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0033-183X
ispartof Protoplasma, 2023-03, Vol.260 (2), p.607-624
issn 0033-183X
1615-6102
language eng
recordid cdi_hal_primary_oai_HAL_hal_03826728v1
source MEDLINE; SpringerLink Journals
subjects Alkaloids
Alkaloids - metabolism
Antineoplastic Agents
Biomedical and Life Sciences
Catharanthus
Catharanthus roseus
Cell Biology
Enzymes
Evolution
Flavonoids
Gene duplication
Gene Expression Regulation, Plant
Homology
Isoforms
Life Sciences
Medicinal plants
Metabolic engineering
Methyltransferase
Methyltransferases - genetics
Methyltransferases - metabolism
Original Article
Phylogeny
Plant Proteins - genetics
Plant Proteins - metabolism
Plant Sciences
Protein Isoforms - genetics
Vinblastine
Vincristine
Vindoline
Zoology
title Identification of a second 16-hydroxytabersonine-O-methyltransferase suggests an evolutionary relationship between alkaloid and flavonoid metabolisms in Catharanthus roseus
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T05%3A02%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20a%20second%2016-hydroxytabersonine-O-methyltransferase%20suggests%20an%20evolutionary%20relationship%20between%20alkaloid%20and%20flavonoid%20metabolisms%20in%20Catharanthus%20roseus&rft.jtitle=Protoplasma&rft.au=Lemos%20Cruz,%20Pamela&rft.date=2023-03-01&rft.volume=260&rft.issue=2&rft.spage=607&rft.epage=624&rft.pages=607-624&rft.issn=0033-183X&rft.eissn=1615-6102&rft_id=info:doi/10.1007/s00709-022-01801-x&rft_dat=%3Cproquest_hal_p%3E2776868063%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2776868063&rft_id=info:pmid/35947213&rfr_iscdi=true