Chemical Vapor Deposition of High‐Optical‐Quality Large‐Area Monolayer Janus Transition Metal Dichalcogenides
One‐pot chemical vapor deposition (CVD) growth of large‐area Janus SeMoS monolayers is reported, with the asymmetric top (Se) and bottom (S) chalcogen atomic planes with respect to the central transition metal (Mo) atoms. The formation of these 2D semiconductor monolayers takes place upon the thermo...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2022-09, Vol.34 (38), p.e2205226-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 38 |
container_start_page | e2205226 |
container_title | Advanced materials (Weinheim) |
container_volume | 34 |
creator | Gan, Ziyang Paradisanos, Ioannis Estrada‐Real, Ana Picker, Julian Najafidehaghani, Emad Davies, Francis Neumann, Christof Robert, Cedric Wiecha, Peter Watanabe, Kenji Taniguchi, Takashi Marie, Xavier Biskupek, Johannes Mundszinger, Manuel Leiter, Robert Kaiser, Ute Krasheninnikov, Arkady V. Urbaszek, Bernhard George, Antony Turchanin, Andrey |
description | One‐pot chemical vapor deposition (CVD) growth of large‐area Janus SeMoS monolayers is reported, with the asymmetric top (Se) and bottom (S) chalcogen atomic planes with respect to the central transition metal (Mo) atoms. The formation of these 2D semiconductor monolayers takes place upon the thermodynamic‐equilibrium‐driven exchange of the bottom Se atoms of the initially grown MoSe2 single crystals on gold foils with S atoms. The growth process is characterized by complementary experimental techniques including Raman and X‐ray photoelectron spectroscopy, transmission electron microscopy, and the growth mechanisms are rationalized by first principle calculations. The remarkably high optical quality of the synthesized Janus monolayers is demonstrated by optical and magneto‐optical measurements which reveal the strong exciton–phonon coupling and enable an exciton g‐factor of −3.3.
Monolayers of Janus SeMoS with asymmetric top (Se) and bottom (S) chalcogen atomic planes with respect to the central transition metal (Mo) atoms are synthesized using a one‐pot chemical vapor deposition process and its high optical quality is demonstrated by low‐temperature magneto optical spectroscopy. |
doi_str_mv | 10.1002/adma.202205226 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03822483v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2717155448</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4246-a5e0d7f683dea78379caf9e7b9a96f2899a017489548060c0bfa0ccbf769eaf03</originalsourceid><addsrcrecordid>eNqFkcGO0zAQhi0EEqVw5RyJCxxSxk7ixMeoBQpqtUJauFpTd9x6lcbBTkC98Qg8I0-Cq64WiQsnj63v_2c8P2MvOSw4gHiL-xMuBAgBlRDyEZvxSvC8BFU9ZjNQRZUrWTZP2bMY7wBASZAzFpdHOjmDXfYVBx-yFQ0-utH5PvM2W7vD8ffPXzfDeEFS9XnCzo3nbIPhQOneBsJs63vf4ZlC9gn7KWa3Aft7jy2NyXrlzBE74w_Uuz3F5-yJxS7Si_tzzr68f3e7XOebmw8fl-0mN6UoZY4Vwb62sin2hHVT1MqgVVTvFCppRaMUAq_LRlVlAxIM7CyCMTtbS0VooZizN1ff1FwPwZ0wnLVHp9ftRl_eoGiEKJviO0_s6ys7BP9tojjqk4uGug578lPUQirZSEi7Teirf9A7P4U-_USLmte8qsrkOWeLK2WCjzGQfZiAg77kpS956Ye8kkBdBT9cR-f_0Lpdbdu_2j_tu5ww</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2717155448</pqid></control><display><type>article</type><title>Chemical Vapor Deposition of High‐Optical‐Quality Large‐Area Monolayer Janus Transition Metal Dichalcogenides</title><source>Access via Wiley Online Library</source><creator>Gan, Ziyang ; Paradisanos, Ioannis ; Estrada‐Real, Ana ; Picker, Julian ; Najafidehaghani, Emad ; Davies, Francis ; Neumann, Christof ; Robert, Cedric ; Wiecha, Peter ; Watanabe, Kenji ; Taniguchi, Takashi ; Marie, Xavier ; Biskupek, Johannes ; Mundszinger, Manuel ; Leiter, Robert ; Kaiser, Ute ; Krasheninnikov, Arkady V. ; Urbaszek, Bernhard ; George, Antony ; Turchanin, Andrey</creator><creatorcontrib>Gan, Ziyang ; Paradisanos, Ioannis ; Estrada‐Real, Ana ; Picker, Julian ; Najafidehaghani, Emad ; Davies, Francis ; Neumann, Christof ; Robert, Cedric ; Wiecha, Peter ; Watanabe, Kenji ; Taniguchi, Takashi ; Marie, Xavier ; Biskupek, Johannes ; Mundszinger, Manuel ; Leiter, Robert ; Kaiser, Ute ; Krasheninnikov, Arkady V. ; Urbaszek, Bernhard ; George, Antony ; Turchanin, Andrey</creatorcontrib><description>One‐pot chemical vapor deposition (CVD) growth of large‐area Janus SeMoS monolayers is reported, with the asymmetric top (Se) and bottom (S) chalcogen atomic planes with respect to the central transition metal (Mo) atoms. The formation of these 2D semiconductor monolayers takes place upon the thermodynamic‐equilibrium‐driven exchange of the bottom Se atoms of the initially grown MoSe2 single crystals on gold foils with S atoms. The growth process is characterized by complementary experimental techniques including Raman and X‐ray photoelectron spectroscopy, transmission electron microscopy, and the growth mechanisms are rationalized by first principle calculations. The remarkably high optical quality of the synthesized Janus monolayers is demonstrated by optical and magneto‐optical measurements which reveal the strong exciton–phonon coupling and enable an exciton g‐factor of −3.3.
Monolayers of Janus SeMoS with asymmetric top (Se) and bottom (S) chalcogen atomic planes with respect to the central transition metal (Mo) atoms are synthesized using a one‐pot chemical vapor deposition process and its high optical quality is demonstrated by low‐temperature magneto optical spectroscopy.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202205226</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>2D materials ; Chalcogenides ; Chemical vapor deposition ; Computational Physics ; Condensed Matter ; Crystal growth ; Excitons ; exciton–phonon coupling ; First principles ; high optical quality ; Janus transition metal dichalcogenides ; Materials science ; Mesoscopic Systems and Quantum Hall Effect ; Metal foils ; Monolayers ; Optical measurement ; Optics ; Photoelectrons ; Physics ; Single crystals ; Thermodynamic equilibrium ; Transition metal compounds</subject><ispartof>Advanced materials (Weinheim), 2022-09, Vol.34 (38), p.e2205226-n/a</ispartof><rights>2022 The Authors. Advanced Materials published by Wiley‐VCH GmbH</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4246-a5e0d7f683dea78379caf9e7b9a96f2899a017489548060c0bfa0ccbf769eaf03</citedby><cites>FETCH-LOGICAL-c4246-a5e0d7f683dea78379caf9e7b9a96f2899a017489548060c0bfa0ccbf769eaf03</cites><orcidid>0000-0001-8310-710X ; 0000-0002-7772-2517 ; 0000-0003-2388-1042 ; 0000-0002-7900-3807 ; 0000-0002-8860-6423 ; 0000-0002-0964-3200 ; 0000-0001-5707-5765 ; 0000-0002-3598-7656 ; 0000-0002-9317-5920 ; 0000-0002-3722-3705 ; 0000-0003-0074-7588 ; 0000-0003-0582-4044 ; 0000-0003-0786-2773 ; 0000-0003-0226-7983 ; 0000-0002-4571-0116</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202205226$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202205226$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03822483$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gan, Ziyang</creatorcontrib><creatorcontrib>Paradisanos, Ioannis</creatorcontrib><creatorcontrib>Estrada‐Real, Ana</creatorcontrib><creatorcontrib>Picker, Julian</creatorcontrib><creatorcontrib>Najafidehaghani, Emad</creatorcontrib><creatorcontrib>Davies, Francis</creatorcontrib><creatorcontrib>Neumann, Christof</creatorcontrib><creatorcontrib>Robert, Cedric</creatorcontrib><creatorcontrib>Wiecha, Peter</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Marie, Xavier</creatorcontrib><creatorcontrib>Biskupek, Johannes</creatorcontrib><creatorcontrib>Mundszinger, Manuel</creatorcontrib><creatorcontrib>Leiter, Robert</creatorcontrib><creatorcontrib>Kaiser, Ute</creatorcontrib><creatorcontrib>Krasheninnikov, Arkady V.</creatorcontrib><creatorcontrib>Urbaszek, Bernhard</creatorcontrib><creatorcontrib>George, Antony</creatorcontrib><creatorcontrib>Turchanin, Andrey</creatorcontrib><title>Chemical Vapor Deposition of High‐Optical‐Quality Large‐Area Monolayer Janus Transition Metal Dichalcogenides</title><title>Advanced materials (Weinheim)</title><description>One‐pot chemical vapor deposition (CVD) growth of large‐area Janus SeMoS monolayers is reported, with the asymmetric top (Se) and bottom (S) chalcogen atomic planes with respect to the central transition metal (Mo) atoms. The formation of these 2D semiconductor monolayers takes place upon the thermodynamic‐equilibrium‐driven exchange of the bottom Se atoms of the initially grown MoSe2 single crystals on gold foils with S atoms. The growth process is characterized by complementary experimental techniques including Raman and X‐ray photoelectron spectroscopy, transmission electron microscopy, and the growth mechanisms are rationalized by first principle calculations. The remarkably high optical quality of the synthesized Janus monolayers is demonstrated by optical and magneto‐optical measurements which reveal the strong exciton–phonon coupling and enable an exciton g‐factor of −3.3.
Monolayers of Janus SeMoS with asymmetric top (Se) and bottom (S) chalcogen atomic planes with respect to the central transition metal (Mo) atoms are synthesized using a one‐pot chemical vapor deposition process and its high optical quality is demonstrated by low‐temperature magneto optical spectroscopy.</description><subject>2D materials</subject><subject>Chalcogenides</subject><subject>Chemical vapor deposition</subject><subject>Computational Physics</subject><subject>Condensed Matter</subject><subject>Crystal growth</subject><subject>Excitons</subject><subject>exciton–phonon coupling</subject><subject>First principles</subject><subject>high optical quality</subject><subject>Janus transition metal dichalcogenides</subject><subject>Materials science</subject><subject>Mesoscopic Systems and Quantum Hall Effect</subject><subject>Metal foils</subject><subject>Monolayers</subject><subject>Optical measurement</subject><subject>Optics</subject><subject>Photoelectrons</subject><subject>Physics</subject><subject>Single crystals</subject><subject>Thermodynamic equilibrium</subject><subject>Transition metal compounds</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkcGO0zAQhi0EEqVw5RyJCxxSxk7ixMeoBQpqtUJauFpTd9x6lcbBTkC98Qg8I0-Cq64WiQsnj63v_2c8P2MvOSw4gHiL-xMuBAgBlRDyEZvxSvC8BFU9ZjNQRZUrWTZP2bMY7wBASZAzFpdHOjmDXfYVBx-yFQ0-utH5PvM2W7vD8ffPXzfDeEFS9XnCzo3nbIPhQOneBsJs63vf4ZlC9gn7KWa3Aft7jy2NyXrlzBE74w_Uuz3F5-yJxS7Si_tzzr68f3e7XOebmw8fl-0mN6UoZY4Vwb62sin2hHVT1MqgVVTvFCppRaMUAq_LRlVlAxIM7CyCMTtbS0VooZizN1ff1FwPwZ0wnLVHp9ftRl_eoGiEKJviO0_s6ys7BP9tojjqk4uGug578lPUQirZSEi7Teirf9A7P4U-_USLmte8qsrkOWeLK2WCjzGQfZiAg77kpS956Ye8kkBdBT9cR-f_0Lpdbdu_2j_tu5ww</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Gan, Ziyang</creator><creator>Paradisanos, Ioannis</creator><creator>Estrada‐Real, Ana</creator><creator>Picker, Julian</creator><creator>Najafidehaghani, Emad</creator><creator>Davies, Francis</creator><creator>Neumann, Christof</creator><creator>Robert, Cedric</creator><creator>Wiecha, Peter</creator><creator>Watanabe, Kenji</creator><creator>Taniguchi, Takashi</creator><creator>Marie, Xavier</creator><creator>Biskupek, Johannes</creator><creator>Mundszinger, Manuel</creator><creator>Leiter, Robert</creator><creator>Kaiser, Ute</creator><creator>Krasheninnikov, Arkady V.</creator><creator>Urbaszek, Bernhard</creator><creator>George, Antony</creator><creator>Turchanin, Andrey</creator><general>Wiley Subscription Services, Inc</general><general>Wiley-VCH Verlag</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-8310-710X</orcidid><orcidid>https://orcid.org/0000-0002-7772-2517</orcidid><orcidid>https://orcid.org/0000-0003-2388-1042</orcidid><orcidid>https://orcid.org/0000-0002-7900-3807</orcidid><orcidid>https://orcid.org/0000-0002-8860-6423</orcidid><orcidid>https://orcid.org/0000-0002-0964-3200</orcidid><orcidid>https://orcid.org/0000-0001-5707-5765</orcidid><orcidid>https://orcid.org/0000-0002-3598-7656</orcidid><orcidid>https://orcid.org/0000-0002-9317-5920</orcidid><orcidid>https://orcid.org/0000-0002-3722-3705</orcidid><orcidid>https://orcid.org/0000-0003-0074-7588</orcidid><orcidid>https://orcid.org/0000-0003-0582-4044</orcidid><orcidid>https://orcid.org/0000-0003-0786-2773</orcidid><orcidid>https://orcid.org/0000-0003-0226-7983</orcidid><orcidid>https://orcid.org/0000-0002-4571-0116</orcidid></search><sort><creationdate>20220901</creationdate><title>Chemical Vapor Deposition of High‐Optical‐Quality Large‐Area Monolayer Janus Transition Metal Dichalcogenides</title><author>Gan, Ziyang ; Paradisanos, Ioannis ; Estrada‐Real, Ana ; Picker, Julian ; Najafidehaghani, Emad ; Davies, Francis ; Neumann, Christof ; Robert, Cedric ; Wiecha, Peter ; Watanabe, Kenji ; Taniguchi, Takashi ; Marie, Xavier ; Biskupek, Johannes ; Mundszinger, Manuel ; Leiter, Robert ; Kaiser, Ute ; Krasheninnikov, Arkady V. ; Urbaszek, Bernhard ; George, Antony ; Turchanin, Andrey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4246-a5e0d7f683dea78379caf9e7b9a96f2899a017489548060c0bfa0ccbf769eaf03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>2D materials</topic><topic>Chalcogenides</topic><topic>Chemical vapor deposition</topic><topic>Computational Physics</topic><topic>Condensed Matter</topic><topic>Crystal growth</topic><topic>Excitons</topic><topic>exciton–phonon coupling</topic><topic>First principles</topic><topic>high optical quality</topic><topic>Janus transition metal dichalcogenides</topic><topic>Materials science</topic><topic>Mesoscopic Systems and Quantum Hall Effect</topic><topic>Metal foils</topic><topic>Monolayers</topic><topic>Optical measurement</topic><topic>Optics</topic><topic>Photoelectrons</topic><topic>Physics</topic><topic>Single crystals</topic><topic>Thermodynamic equilibrium</topic><topic>Transition metal compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gan, Ziyang</creatorcontrib><creatorcontrib>Paradisanos, Ioannis</creatorcontrib><creatorcontrib>Estrada‐Real, Ana</creatorcontrib><creatorcontrib>Picker, Julian</creatorcontrib><creatorcontrib>Najafidehaghani, Emad</creatorcontrib><creatorcontrib>Davies, Francis</creatorcontrib><creatorcontrib>Neumann, Christof</creatorcontrib><creatorcontrib>Robert, Cedric</creatorcontrib><creatorcontrib>Wiecha, Peter</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Marie, Xavier</creatorcontrib><creatorcontrib>Biskupek, Johannes</creatorcontrib><creatorcontrib>Mundszinger, Manuel</creatorcontrib><creatorcontrib>Leiter, Robert</creatorcontrib><creatorcontrib>Kaiser, Ute</creatorcontrib><creatorcontrib>Krasheninnikov, Arkady V.</creatorcontrib><creatorcontrib>Urbaszek, Bernhard</creatorcontrib><creatorcontrib>George, Antony</creatorcontrib><creatorcontrib>Turchanin, Andrey</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library Free Content</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gan, Ziyang</au><au>Paradisanos, Ioannis</au><au>Estrada‐Real, Ana</au><au>Picker, Julian</au><au>Najafidehaghani, Emad</au><au>Davies, Francis</au><au>Neumann, Christof</au><au>Robert, Cedric</au><au>Wiecha, Peter</au><au>Watanabe, Kenji</au><au>Taniguchi, Takashi</au><au>Marie, Xavier</au><au>Biskupek, Johannes</au><au>Mundszinger, Manuel</au><au>Leiter, Robert</au><au>Kaiser, Ute</au><au>Krasheninnikov, Arkady V.</au><au>Urbaszek, Bernhard</au><au>George, Antony</au><au>Turchanin, Andrey</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemical Vapor Deposition of High‐Optical‐Quality Large‐Area Monolayer Janus Transition Metal Dichalcogenides</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2022-09-01</date><risdate>2022</risdate><volume>34</volume><issue>38</issue><spage>e2205226</spage><epage>n/a</epage><pages>e2205226-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>One‐pot chemical vapor deposition (CVD) growth of large‐area Janus SeMoS monolayers is reported, with the asymmetric top (Se) and bottom (S) chalcogen atomic planes with respect to the central transition metal (Mo) atoms. The formation of these 2D semiconductor monolayers takes place upon the thermodynamic‐equilibrium‐driven exchange of the bottom Se atoms of the initially grown MoSe2 single crystals on gold foils with S atoms. The growth process is characterized by complementary experimental techniques including Raman and X‐ray photoelectron spectroscopy, transmission electron microscopy, and the growth mechanisms are rationalized by first principle calculations. The remarkably high optical quality of the synthesized Janus monolayers is demonstrated by optical and magneto‐optical measurements which reveal the strong exciton–phonon coupling and enable an exciton g‐factor of −3.3.
Monolayers of Janus SeMoS with asymmetric top (Se) and bottom (S) chalcogen atomic planes with respect to the central transition metal (Mo) atoms are synthesized using a one‐pot chemical vapor deposition process and its high optical quality is demonstrated by low‐temperature magneto optical spectroscopy.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.202205226</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-8310-710X</orcidid><orcidid>https://orcid.org/0000-0002-7772-2517</orcidid><orcidid>https://orcid.org/0000-0003-2388-1042</orcidid><orcidid>https://orcid.org/0000-0002-7900-3807</orcidid><orcidid>https://orcid.org/0000-0002-8860-6423</orcidid><orcidid>https://orcid.org/0000-0002-0964-3200</orcidid><orcidid>https://orcid.org/0000-0001-5707-5765</orcidid><orcidid>https://orcid.org/0000-0002-3598-7656</orcidid><orcidid>https://orcid.org/0000-0002-9317-5920</orcidid><orcidid>https://orcid.org/0000-0002-3722-3705</orcidid><orcidid>https://orcid.org/0000-0003-0074-7588</orcidid><orcidid>https://orcid.org/0000-0003-0582-4044</orcidid><orcidid>https://orcid.org/0000-0003-0786-2773</orcidid><orcidid>https://orcid.org/0000-0003-0226-7983</orcidid><orcidid>https://orcid.org/0000-0002-4571-0116</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2022-09, Vol.34 (38), p.e2205226-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03822483v1 |
source | Access via Wiley Online Library |
subjects | 2D materials Chalcogenides Chemical vapor deposition Computational Physics Condensed Matter Crystal growth Excitons exciton–phonon coupling First principles high optical quality Janus transition metal dichalcogenides Materials science Mesoscopic Systems and Quantum Hall Effect Metal foils Monolayers Optical measurement Optics Photoelectrons Physics Single crystals Thermodynamic equilibrium Transition metal compounds |
title | Chemical Vapor Deposition of High‐Optical‐Quality Large‐Area Monolayer Janus Transition Metal Dichalcogenides |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T20%3A59%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemical%20Vapor%20Deposition%20of%20High%E2%80%90Optical%E2%80%90Quality%20Large%E2%80%90Area%20Monolayer%20Janus%20Transition%20Metal%20Dichalcogenides&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Gan,%20Ziyang&rft.date=2022-09-01&rft.volume=34&rft.issue=38&rft.spage=e2205226&rft.epage=n/a&rft.pages=e2205226-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202205226&rft_dat=%3Cproquest_hal_p%3E2717155448%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2717155448&rft_id=info:pmid/&rfr_iscdi=true |