Chemical Vapor Deposition of High‐Optical‐Quality Large‐Area Monolayer Janus Transition Metal Dichalcogenides

One‐pot chemical vapor deposition (CVD) growth of large‐area Janus SeMoS monolayers is reported, with the asymmetric top (Se) and bottom (S) chalcogen atomic planes with respect to the central transition metal (Mo) atoms. The formation of these 2D semiconductor monolayers takes place upon the thermo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2022-09, Vol.34 (38), p.e2205226-n/a
Hauptverfasser: Gan, Ziyang, Paradisanos, Ioannis, Estrada‐Real, Ana, Picker, Julian, Najafidehaghani, Emad, Davies, Francis, Neumann, Christof, Robert, Cedric, Wiecha, Peter, Watanabe, Kenji, Taniguchi, Takashi, Marie, Xavier, Biskupek, Johannes, Mundszinger, Manuel, Leiter, Robert, Kaiser, Ute, Krasheninnikov, Arkady V., Urbaszek, Bernhard, George, Antony, Turchanin, Andrey
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 38
container_start_page e2205226
container_title Advanced materials (Weinheim)
container_volume 34
creator Gan, Ziyang
Paradisanos, Ioannis
Estrada‐Real, Ana
Picker, Julian
Najafidehaghani, Emad
Davies, Francis
Neumann, Christof
Robert, Cedric
Wiecha, Peter
Watanabe, Kenji
Taniguchi, Takashi
Marie, Xavier
Biskupek, Johannes
Mundszinger, Manuel
Leiter, Robert
Kaiser, Ute
Krasheninnikov, Arkady V.
Urbaszek, Bernhard
George, Antony
Turchanin, Andrey
description One‐pot chemical vapor deposition (CVD) growth of large‐area Janus SeMoS monolayers is reported, with the asymmetric top (Se) and bottom (S) chalcogen atomic planes with respect to the central transition metal (Mo) atoms. The formation of these 2D semiconductor monolayers takes place upon the thermodynamic‐equilibrium‐driven exchange of the bottom Se atoms of the initially grown MoSe2 single crystals on gold foils with S atoms. The growth process is characterized by complementary experimental techniques including Raman and X‐ray photoelectron spectroscopy, transmission electron microscopy, and the growth mechanisms are rationalized by first principle calculations. The remarkably high optical quality of the synthesized Janus monolayers is demonstrated by optical and magneto‐optical measurements which reveal the strong exciton–phonon coupling and enable an exciton g‐factor of −3.3. Monolayers of Janus SeMoS with asymmetric top (Se) and bottom (S) chalcogen atomic planes with respect to the central transition metal (Mo) atoms are synthesized using a one‐pot chemical vapor deposition process and its high optical quality is demonstrated by low‐temperature magneto optical spectroscopy.
doi_str_mv 10.1002/adma.202205226
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03822483v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2717155448</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4246-a5e0d7f683dea78379caf9e7b9a96f2899a017489548060c0bfa0ccbf769eaf03</originalsourceid><addsrcrecordid>eNqFkcGO0zAQhi0EEqVw5RyJCxxSxk7ixMeoBQpqtUJauFpTd9x6lcbBTkC98Qg8I0-Cq64WiQsnj63v_2c8P2MvOSw4gHiL-xMuBAgBlRDyEZvxSvC8BFU9ZjNQRZUrWTZP2bMY7wBASZAzFpdHOjmDXfYVBx-yFQ0-utH5PvM2W7vD8ffPXzfDeEFS9XnCzo3nbIPhQOneBsJs63vf4ZlC9gn7KWa3Aft7jy2NyXrlzBE74w_Uuz3F5-yJxS7Si_tzzr68f3e7XOebmw8fl-0mN6UoZY4Vwb62sin2hHVT1MqgVVTvFCppRaMUAq_LRlVlAxIM7CyCMTtbS0VooZizN1ff1FwPwZ0wnLVHp9ftRl_eoGiEKJviO0_s6ys7BP9tojjqk4uGug578lPUQirZSEi7Teirf9A7P4U-_USLmte8qsrkOWeLK2WCjzGQfZiAg77kpS956Ye8kkBdBT9cR-f_0Lpdbdu_2j_tu5ww</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2717155448</pqid></control><display><type>article</type><title>Chemical Vapor Deposition of High‐Optical‐Quality Large‐Area Monolayer Janus Transition Metal Dichalcogenides</title><source>Access via Wiley Online Library</source><creator>Gan, Ziyang ; Paradisanos, Ioannis ; Estrada‐Real, Ana ; Picker, Julian ; Najafidehaghani, Emad ; Davies, Francis ; Neumann, Christof ; Robert, Cedric ; Wiecha, Peter ; Watanabe, Kenji ; Taniguchi, Takashi ; Marie, Xavier ; Biskupek, Johannes ; Mundszinger, Manuel ; Leiter, Robert ; Kaiser, Ute ; Krasheninnikov, Arkady V. ; Urbaszek, Bernhard ; George, Antony ; Turchanin, Andrey</creator><creatorcontrib>Gan, Ziyang ; Paradisanos, Ioannis ; Estrada‐Real, Ana ; Picker, Julian ; Najafidehaghani, Emad ; Davies, Francis ; Neumann, Christof ; Robert, Cedric ; Wiecha, Peter ; Watanabe, Kenji ; Taniguchi, Takashi ; Marie, Xavier ; Biskupek, Johannes ; Mundszinger, Manuel ; Leiter, Robert ; Kaiser, Ute ; Krasheninnikov, Arkady V. ; Urbaszek, Bernhard ; George, Antony ; Turchanin, Andrey</creatorcontrib><description>One‐pot chemical vapor deposition (CVD) growth of large‐area Janus SeMoS monolayers is reported, with the asymmetric top (Se) and bottom (S) chalcogen atomic planes with respect to the central transition metal (Mo) atoms. The formation of these 2D semiconductor monolayers takes place upon the thermodynamic‐equilibrium‐driven exchange of the bottom Se atoms of the initially grown MoSe2 single crystals on gold foils with S atoms. The growth process is characterized by complementary experimental techniques including Raman and X‐ray photoelectron spectroscopy, transmission electron microscopy, and the growth mechanisms are rationalized by first principle calculations. The remarkably high optical quality of the synthesized Janus monolayers is demonstrated by optical and magneto‐optical measurements which reveal the strong exciton–phonon coupling and enable an exciton g‐factor of −3.3. Monolayers of Janus SeMoS with asymmetric top (Se) and bottom (S) chalcogen atomic planes with respect to the central transition metal (Mo) atoms are synthesized using a one‐pot chemical vapor deposition process and its high optical quality is demonstrated by low‐temperature magneto optical spectroscopy.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202205226</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>2D materials ; Chalcogenides ; Chemical vapor deposition ; Computational Physics ; Condensed Matter ; Crystal growth ; Excitons ; exciton–phonon coupling ; First principles ; high optical quality ; Janus transition metal dichalcogenides ; Materials science ; Mesoscopic Systems and Quantum Hall Effect ; Metal foils ; Monolayers ; Optical measurement ; Optics ; Photoelectrons ; Physics ; Single crystals ; Thermodynamic equilibrium ; Transition metal compounds</subject><ispartof>Advanced materials (Weinheim), 2022-09, Vol.34 (38), p.e2205226-n/a</ispartof><rights>2022 The Authors. Advanced Materials published by Wiley‐VCH GmbH</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4246-a5e0d7f683dea78379caf9e7b9a96f2899a017489548060c0bfa0ccbf769eaf03</citedby><cites>FETCH-LOGICAL-c4246-a5e0d7f683dea78379caf9e7b9a96f2899a017489548060c0bfa0ccbf769eaf03</cites><orcidid>0000-0001-8310-710X ; 0000-0002-7772-2517 ; 0000-0003-2388-1042 ; 0000-0002-7900-3807 ; 0000-0002-8860-6423 ; 0000-0002-0964-3200 ; 0000-0001-5707-5765 ; 0000-0002-3598-7656 ; 0000-0002-9317-5920 ; 0000-0002-3722-3705 ; 0000-0003-0074-7588 ; 0000-0003-0582-4044 ; 0000-0003-0786-2773 ; 0000-0003-0226-7983 ; 0000-0002-4571-0116</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202205226$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202205226$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03822483$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gan, Ziyang</creatorcontrib><creatorcontrib>Paradisanos, Ioannis</creatorcontrib><creatorcontrib>Estrada‐Real, Ana</creatorcontrib><creatorcontrib>Picker, Julian</creatorcontrib><creatorcontrib>Najafidehaghani, Emad</creatorcontrib><creatorcontrib>Davies, Francis</creatorcontrib><creatorcontrib>Neumann, Christof</creatorcontrib><creatorcontrib>Robert, Cedric</creatorcontrib><creatorcontrib>Wiecha, Peter</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Marie, Xavier</creatorcontrib><creatorcontrib>Biskupek, Johannes</creatorcontrib><creatorcontrib>Mundszinger, Manuel</creatorcontrib><creatorcontrib>Leiter, Robert</creatorcontrib><creatorcontrib>Kaiser, Ute</creatorcontrib><creatorcontrib>Krasheninnikov, Arkady V.</creatorcontrib><creatorcontrib>Urbaszek, Bernhard</creatorcontrib><creatorcontrib>George, Antony</creatorcontrib><creatorcontrib>Turchanin, Andrey</creatorcontrib><title>Chemical Vapor Deposition of High‐Optical‐Quality Large‐Area Monolayer Janus Transition Metal Dichalcogenides</title><title>Advanced materials (Weinheim)</title><description>One‐pot chemical vapor deposition (CVD) growth of large‐area Janus SeMoS monolayers is reported, with the asymmetric top (Se) and bottom (S) chalcogen atomic planes with respect to the central transition metal (Mo) atoms. The formation of these 2D semiconductor monolayers takes place upon the thermodynamic‐equilibrium‐driven exchange of the bottom Se atoms of the initially grown MoSe2 single crystals on gold foils with S atoms. The growth process is characterized by complementary experimental techniques including Raman and X‐ray photoelectron spectroscopy, transmission electron microscopy, and the growth mechanisms are rationalized by first principle calculations. The remarkably high optical quality of the synthesized Janus monolayers is demonstrated by optical and magneto‐optical measurements which reveal the strong exciton–phonon coupling and enable an exciton g‐factor of −3.3. Monolayers of Janus SeMoS with asymmetric top (Se) and bottom (S) chalcogen atomic planes with respect to the central transition metal (Mo) atoms are synthesized using a one‐pot chemical vapor deposition process and its high optical quality is demonstrated by low‐temperature magneto optical spectroscopy.</description><subject>2D materials</subject><subject>Chalcogenides</subject><subject>Chemical vapor deposition</subject><subject>Computational Physics</subject><subject>Condensed Matter</subject><subject>Crystal growth</subject><subject>Excitons</subject><subject>exciton–phonon coupling</subject><subject>First principles</subject><subject>high optical quality</subject><subject>Janus transition metal dichalcogenides</subject><subject>Materials science</subject><subject>Mesoscopic Systems and Quantum Hall Effect</subject><subject>Metal foils</subject><subject>Monolayers</subject><subject>Optical measurement</subject><subject>Optics</subject><subject>Photoelectrons</subject><subject>Physics</subject><subject>Single crystals</subject><subject>Thermodynamic equilibrium</subject><subject>Transition metal compounds</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkcGO0zAQhi0EEqVw5RyJCxxSxk7ixMeoBQpqtUJauFpTd9x6lcbBTkC98Qg8I0-Cq64WiQsnj63v_2c8P2MvOSw4gHiL-xMuBAgBlRDyEZvxSvC8BFU9ZjNQRZUrWTZP2bMY7wBASZAzFpdHOjmDXfYVBx-yFQ0-utH5PvM2W7vD8ffPXzfDeEFS9XnCzo3nbIPhQOneBsJs63vf4ZlC9gn7KWa3Aft7jy2NyXrlzBE74w_Uuz3F5-yJxS7Si_tzzr68f3e7XOebmw8fl-0mN6UoZY4Vwb62sin2hHVT1MqgVVTvFCppRaMUAq_LRlVlAxIM7CyCMTtbS0VooZizN1ff1FwPwZ0wnLVHp9ftRl_eoGiEKJviO0_s6ys7BP9tojjqk4uGug578lPUQirZSEi7Teirf9A7P4U-_USLmte8qsrkOWeLK2WCjzGQfZiAg77kpS956Ye8kkBdBT9cR-f_0Lpdbdu_2j_tu5ww</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Gan, Ziyang</creator><creator>Paradisanos, Ioannis</creator><creator>Estrada‐Real, Ana</creator><creator>Picker, Julian</creator><creator>Najafidehaghani, Emad</creator><creator>Davies, Francis</creator><creator>Neumann, Christof</creator><creator>Robert, Cedric</creator><creator>Wiecha, Peter</creator><creator>Watanabe, Kenji</creator><creator>Taniguchi, Takashi</creator><creator>Marie, Xavier</creator><creator>Biskupek, Johannes</creator><creator>Mundszinger, Manuel</creator><creator>Leiter, Robert</creator><creator>Kaiser, Ute</creator><creator>Krasheninnikov, Arkady V.</creator><creator>Urbaszek, Bernhard</creator><creator>George, Antony</creator><creator>Turchanin, Andrey</creator><general>Wiley Subscription Services, Inc</general><general>Wiley-VCH Verlag</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-8310-710X</orcidid><orcidid>https://orcid.org/0000-0002-7772-2517</orcidid><orcidid>https://orcid.org/0000-0003-2388-1042</orcidid><orcidid>https://orcid.org/0000-0002-7900-3807</orcidid><orcidid>https://orcid.org/0000-0002-8860-6423</orcidid><orcidid>https://orcid.org/0000-0002-0964-3200</orcidid><orcidid>https://orcid.org/0000-0001-5707-5765</orcidid><orcidid>https://orcid.org/0000-0002-3598-7656</orcidid><orcidid>https://orcid.org/0000-0002-9317-5920</orcidid><orcidid>https://orcid.org/0000-0002-3722-3705</orcidid><orcidid>https://orcid.org/0000-0003-0074-7588</orcidid><orcidid>https://orcid.org/0000-0003-0582-4044</orcidid><orcidid>https://orcid.org/0000-0003-0786-2773</orcidid><orcidid>https://orcid.org/0000-0003-0226-7983</orcidid><orcidid>https://orcid.org/0000-0002-4571-0116</orcidid></search><sort><creationdate>20220901</creationdate><title>Chemical Vapor Deposition of High‐Optical‐Quality Large‐Area Monolayer Janus Transition Metal Dichalcogenides</title><author>Gan, Ziyang ; Paradisanos, Ioannis ; Estrada‐Real, Ana ; Picker, Julian ; Najafidehaghani, Emad ; Davies, Francis ; Neumann, Christof ; Robert, Cedric ; Wiecha, Peter ; Watanabe, Kenji ; Taniguchi, Takashi ; Marie, Xavier ; Biskupek, Johannes ; Mundszinger, Manuel ; Leiter, Robert ; Kaiser, Ute ; Krasheninnikov, Arkady V. ; Urbaszek, Bernhard ; George, Antony ; Turchanin, Andrey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4246-a5e0d7f683dea78379caf9e7b9a96f2899a017489548060c0bfa0ccbf769eaf03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>2D materials</topic><topic>Chalcogenides</topic><topic>Chemical vapor deposition</topic><topic>Computational Physics</topic><topic>Condensed Matter</topic><topic>Crystal growth</topic><topic>Excitons</topic><topic>exciton–phonon coupling</topic><topic>First principles</topic><topic>high optical quality</topic><topic>Janus transition metal dichalcogenides</topic><topic>Materials science</topic><topic>Mesoscopic Systems and Quantum Hall Effect</topic><topic>Metal foils</topic><topic>Monolayers</topic><topic>Optical measurement</topic><topic>Optics</topic><topic>Photoelectrons</topic><topic>Physics</topic><topic>Single crystals</topic><topic>Thermodynamic equilibrium</topic><topic>Transition metal compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gan, Ziyang</creatorcontrib><creatorcontrib>Paradisanos, Ioannis</creatorcontrib><creatorcontrib>Estrada‐Real, Ana</creatorcontrib><creatorcontrib>Picker, Julian</creatorcontrib><creatorcontrib>Najafidehaghani, Emad</creatorcontrib><creatorcontrib>Davies, Francis</creatorcontrib><creatorcontrib>Neumann, Christof</creatorcontrib><creatorcontrib>Robert, Cedric</creatorcontrib><creatorcontrib>Wiecha, Peter</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Marie, Xavier</creatorcontrib><creatorcontrib>Biskupek, Johannes</creatorcontrib><creatorcontrib>Mundszinger, Manuel</creatorcontrib><creatorcontrib>Leiter, Robert</creatorcontrib><creatorcontrib>Kaiser, Ute</creatorcontrib><creatorcontrib>Krasheninnikov, Arkady V.</creatorcontrib><creatorcontrib>Urbaszek, Bernhard</creatorcontrib><creatorcontrib>George, Antony</creatorcontrib><creatorcontrib>Turchanin, Andrey</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library Free Content</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gan, Ziyang</au><au>Paradisanos, Ioannis</au><au>Estrada‐Real, Ana</au><au>Picker, Julian</au><au>Najafidehaghani, Emad</au><au>Davies, Francis</au><au>Neumann, Christof</au><au>Robert, Cedric</au><au>Wiecha, Peter</au><au>Watanabe, Kenji</au><au>Taniguchi, Takashi</au><au>Marie, Xavier</au><au>Biskupek, Johannes</au><au>Mundszinger, Manuel</au><au>Leiter, Robert</au><au>Kaiser, Ute</au><au>Krasheninnikov, Arkady V.</au><au>Urbaszek, Bernhard</au><au>George, Antony</au><au>Turchanin, Andrey</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemical Vapor Deposition of High‐Optical‐Quality Large‐Area Monolayer Janus Transition Metal Dichalcogenides</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2022-09-01</date><risdate>2022</risdate><volume>34</volume><issue>38</issue><spage>e2205226</spage><epage>n/a</epage><pages>e2205226-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>One‐pot chemical vapor deposition (CVD) growth of large‐area Janus SeMoS monolayers is reported, with the asymmetric top (Se) and bottom (S) chalcogen atomic planes with respect to the central transition metal (Mo) atoms. The formation of these 2D semiconductor monolayers takes place upon the thermodynamic‐equilibrium‐driven exchange of the bottom Se atoms of the initially grown MoSe2 single crystals on gold foils with S atoms. The growth process is characterized by complementary experimental techniques including Raman and X‐ray photoelectron spectroscopy, transmission electron microscopy, and the growth mechanisms are rationalized by first principle calculations. The remarkably high optical quality of the synthesized Janus monolayers is demonstrated by optical and magneto‐optical measurements which reveal the strong exciton–phonon coupling and enable an exciton g‐factor of −3.3. Monolayers of Janus SeMoS with asymmetric top (Se) and bottom (S) chalcogen atomic planes with respect to the central transition metal (Mo) atoms are synthesized using a one‐pot chemical vapor deposition process and its high optical quality is demonstrated by low‐temperature magneto optical spectroscopy.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.202205226</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-8310-710X</orcidid><orcidid>https://orcid.org/0000-0002-7772-2517</orcidid><orcidid>https://orcid.org/0000-0003-2388-1042</orcidid><orcidid>https://orcid.org/0000-0002-7900-3807</orcidid><orcidid>https://orcid.org/0000-0002-8860-6423</orcidid><orcidid>https://orcid.org/0000-0002-0964-3200</orcidid><orcidid>https://orcid.org/0000-0001-5707-5765</orcidid><orcidid>https://orcid.org/0000-0002-3598-7656</orcidid><orcidid>https://orcid.org/0000-0002-9317-5920</orcidid><orcidid>https://orcid.org/0000-0002-3722-3705</orcidid><orcidid>https://orcid.org/0000-0003-0074-7588</orcidid><orcidid>https://orcid.org/0000-0003-0582-4044</orcidid><orcidid>https://orcid.org/0000-0003-0786-2773</orcidid><orcidid>https://orcid.org/0000-0003-0226-7983</orcidid><orcidid>https://orcid.org/0000-0002-4571-0116</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2022-09, Vol.34 (38), p.e2205226-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_hal_primary_oai_HAL_hal_03822483v1
source Access via Wiley Online Library
subjects 2D materials
Chalcogenides
Chemical vapor deposition
Computational Physics
Condensed Matter
Crystal growth
Excitons
exciton–phonon coupling
First principles
high optical quality
Janus transition metal dichalcogenides
Materials science
Mesoscopic Systems and Quantum Hall Effect
Metal foils
Monolayers
Optical measurement
Optics
Photoelectrons
Physics
Single crystals
Thermodynamic equilibrium
Transition metal compounds
title Chemical Vapor Deposition of High‐Optical‐Quality Large‐Area Monolayer Janus Transition Metal Dichalcogenides
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T20%3A59%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemical%20Vapor%20Deposition%20of%20High%E2%80%90Optical%E2%80%90Quality%20Large%E2%80%90Area%20Monolayer%20Janus%20Transition%20Metal%20Dichalcogenides&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Gan,%20Ziyang&rft.date=2022-09-01&rft.volume=34&rft.issue=38&rft.spage=e2205226&rft.epage=n/a&rft.pages=e2205226-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202205226&rft_dat=%3Cproquest_hal_p%3E2717155448%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2717155448&rft_id=info:pmid/&rfr_iscdi=true