Regional sub-daily stochastic weather generator based on reanalyses for surface water stress estimation in central Tunisia
We present MetGen: a sub-daily multi-variable stochastic weather generator implemented as an R library that can be used to perform gap-filling and to extend in time meteorological observation series. MetGen is tailored to provide surrogate series of air temperature, relative air humidity, global rad...
Gespeichert in:
Veröffentlicht in: | Environmental modelling & software : with environment data news 2022-09, Vol.155, p.105448, Article 105448 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 105448 |
container_title | Environmental modelling & software : with environment data news |
container_volume | 155 |
creator | Farhani, Nesrine Carreau, Julie Kassouk, Zeineb Mougenot, Bernard Le Page, Michel Lili-Chabaane, Zohra Zitouna-Chebbi, Rim Boulet, Gilles |
description | We present MetGen: a sub-daily multi-variable stochastic weather generator implemented as an R library that can be used to perform gap-filling and to extend in time meteorological observation series. MetGen is tailored to provide surrogate series of air temperature, relative air humidity, global radiation and wind speed needed for surface water stress estimation that requires sub-daily resolution. Multiple gauged stations can be used to increase the calibration data although spatial dependence is not modeled. The approach relies on Generalized Linear Models that use, among their covariates, large-scale variables derived from ERA5 reanalyses. MetGen aims at preserving key features of the meteorological variables along with inter-variable dependencies. We illustrate the abilities of MetGen using a case study with three stations in central Tunisia. We consider as alternatives a univariate and a multivariate bias correction techniques along with the un-processed large-scale variables.
•Stochastic weather generator at sub-daily resolution available as an R library.•Gap-filling and temporal extension of multivariate meteorological observation series.•Tailored for plant water stress estimation in semi-arid areas.•Based on generalized linear models with covariates derived from ERA5 reanalyses. |
doi_str_mv | 10.1016/j.envsoft.2022.105448 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03821758v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1364815222001542</els_id><sourcerecordid>S1364815222001542</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-bed32f512fa593d3097a84c143992c1c4166baee1906f0ae7c63b2820cabe3273</originalsourceid><addsrcrecordid>eNqFUMtKA0EQXETBGP0EYa4eNs5jnycJQY0QECSeh97ZnmTCuivTk4T49U5I8Oqpi6KquruS5F7wieCieNxMsN_RYMNEcikjl2dZdZGMRFWqtChlcRmxKrK0Erm8Tm6INpzziLNR8vOBKzf00DHaNmkLrjswCoNZAwVn2B4hrNGzFfboIQyeNUDYsqFnHiHaDoTEbORp6y0YZHsIUU_BIxHDGPIFIS5grmcG--DjpuW2d-TgNrmy0BHenec4-Xx5Xs7m6eL99W02XaRG1TykDbZK2lxIC3mtWsXrEqrMiEzVtTTCZKIoGkAUNS8sByxNoRpZSW6gQSVLNU4eTrlr6PS3jwf5gx7A6fl0oY8cV5UUZV7tRNTmJ63xA5FH-2cQXB_L1ht9Llsfy9ansqPv6eTD-MjOoddkHPYGW-fRBN0O7p-EXy5cjWo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Regional sub-daily stochastic weather generator based on reanalyses for surface water stress estimation in central Tunisia</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Farhani, Nesrine ; Carreau, Julie ; Kassouk, Zeineb ; Mougenot, Bernard ; Le Page, Michel ; Lili-Chabaane, Zohra ; Zitouna-Chebbi, Rim ; Boulet, Gilles</creator><creatorcontrib>Farhani, Nesrine ; Carreau, Julie ; Kassouk, Zeineb ; Mougenot, Bernard ; Le Page, Michel ; Lili-Chabaane, Zohra ; Zitouna-Chebbi, Rim ; Boulet, Gilles</creatorcontrib><description>We present MetGen: a sub-daily multi-variable stochastic weather generator implemented as an R library that can be used to perform gap-filling and to extend in time meteorological observation series. MetGen is tailored to provide surrogate series of air temperature, relative air humidity, global radiation and wind speed needed for surface water stress estimation that requires sub-daily resolution. Multiple gauged stations can be used to increase the calibration data although spatial dependence is not modeled. The approach relies on Generalized Linear Models that use, among their covariates, large-scale variables derived from ERA5 reanalyses. MetGen aims at preserving key features of the meteorological variables along with inter-variable dependencies. We illustrate the abilities of MetGen using a case study with three stations in central Tunisia. We consider as alternatives a univariate and a multivariate bias correction techniques along with the un-processed large-scale variables.
•Stochastic weather generator at sub-daily resolution available as an R library.•Gap-filling and temporal extension of multivariate meteorological observation series.•Tailored for plant water stress estimation in semi-arid areas.•Based on generalized linear models with covariates derived from ERA5 reanalyses.</description><identifier>ISSN: 1364-8152</identifier><identifier>EISSN: 1873-6726</identifier><identifier>DOI: 10.1016/j.envsoft.2022.105448</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>bias correction ; Continental interfaces, environment ; ERA5 reanalyses ; Sciences of the Universe ; stochastic weather generator ; sub-daily resolution ; surface water stress estimation</subject><ispartof>Environmental modelling & software : with environment data news, 2022-09, Vol.155, p.105448, Article 105448</ispartof><rights>2022</rights><rights>Attribution - NonCommercial</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-bed32f512fa593d3097a84c143992c1c4166baee1906f0ae7c63b2820cabe3273</citedby><cites>FETCH-LOGICAL-c390t-bed32f512fa593d3097a84c143992c1c4166baee1906f0ae7c63b2820cabe3273</cites><orcidid>0000-0002-0935-9138 ; 0000-0002-3905-7560 ; 0000-0002-0671-2418</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.envsoft.2022.105448$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03821758$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Farhani, Nesrine</creatorcontrib><creatorcontrib>Carreau, Julie</creatorcontrib><creatorcontrib>Kassouk, Zeineb</creatorcontrib><creatorcontrib>Mougenot, Bernard</creatorcontrib><creatorcontrib>Le Page, Michel</creatorcontrib><creatorcontrib>Lili-Chabaane, Zohra</creatorcontrib><creatorcontrib>Zitouna-Chebbi, Rim</creatorcontrib><creatorcontrib>Boulet, Gilles</creatorcontrib><title>Regional sub-daily stochastic weather generator based on reanalyses for surface water stress estimation in central Tunisia</title><title>Environmental modelling & software : with environment data news</title><description>We present MetGen: a sub-daily multi-variable stochastic weather generator implemented as an R library that can be used to perform gap-filling and to extend in time meteorological observation series. MetGen is tailored to provide surrogate series of air temperature, relative air humidity, global radiation and wind speed needed for surface water stress estimation that requires sub-daily resolution. Multiple gauged stations can be used to increase the calibration data although spatial dependence is not modeled. The approach relies on Generalized Linear Models that use, among their covariates, large-scale variables derived from ERA5 reanalyses. MetGen aims at preserving key features of the meteorological variables along with inter-variable dependencies. We illustrate the abilities of MetGen using a case study with three stations in central Tunisia. We consider as alternatives a univariate and a multivariate bias correction techniques along with the un-processed large-scale variables.
•Stochastic weather generator at sub-daily resolution available as an R library.•Gap-filling and temporal extension of multivariate meteorological observation series.•Tailored for plant water stress estimation in semi-arid areas.•Based on generalized linear models with covariates derived from ERA5 reanalyses.</description><subject>bias correction</subject><subject>Continental interfaces, environment</subject><subject>ERA5 reanalyses</subject><subject>Sciences of the Universe</subject><subject>stochastic weather generator</subject><subject>sub-daily resolution</subject><subject>surface water stress estimation</subject><issn>1364-8152</issn><issn>1873-6726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFUMtKA0EQXETBGP0EYa4eNs5jnycJQY0QECSeh97ZnmTCuivTk4T49U5I8Oqpi6KquruS5F7wieCieNxMsN_RYMNEcikjl2dZdZGMRFWqtChlcRmxKrK0Erm8Tm6INpzziLNR8vOBKzf00DHaNmkLrjswCoNZAwVn2B4hrNGzFfboIQyeNUDYsqFnHiHaDoTEbORp6y0YZHsIUU_BIxHDGPIFIS5grmcG--DjpuW2d-TgNrmy0BHenec4-Xx5Xs7m6eL99W02XaRG1TykDbZK2lxIC3mtWsXrEqrMiEzVtTTCZKIoGkAUNS8sByxNoRpZSW6gQSVLNU4eTrlr6PS3jwf5gx7A6fl0oY8cV5UUZV7tRNTmJ63xA5FH-2cQXB_L1ht9Llsfy9ansqPv6eTD-MjOoddkHPYGW-fRBN0O7p-EXy5cjWo</recordid><startdate>202209</startdate><enddate>202209</enddate><creator>Farhani, Nesrine</creator><creator>Carreau, Julie</creator><creator>Kassouk, Zeineb</creator><creator>Mougenot, Bernard</creator><creator>Le Page, Michel</creator><creator>Lili-Chabaane, Zohra</creator><creator>Zitouna-Chebbi, Rim</creator><creator>Boulet, Gilles</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-0935-9138</orcidid><orcidid>https://orcid.org/0000-0002-3905-7560</orcidid><orcidid>https://orcid.org/0000-0002-0671-2418</orcidid></search><sort><creationdate>202209</creationdate><title>Regional sub-daily stochastic weather generator based on reanalyses for surface water stress estimation in central Tunisia</title><author>Farhani, Nesrine ; Carreau, Julie ; Kassouk, Zeineb ; Mougenot, Bernard ; Le Page, Michel ; Lili-Chabaane, Zohra ; Zitouna-Chebbi, Rim ; Boulet, Gilles</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-bed32f512fa593d3097a84c143992c1c4166baee1906f0ae7c63b2820cabe3273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>bias correction</topic><topic>Continental interfaces, environment</topic><topic>ERA5 reanalyses</topic><topic>Sciences of the Universe</topic><topic>stochastic weather generator</topic><topic>sub-daily resolution</topic><topic>surface water stress estimation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Farhani, Nesrine</creatorcontrib><creatorcontrib>Carreau, Julie</creatorcontrib><creatorcontrib>Kassouk, Zeineb</creatorcontrib><creatorcontrib>Mougenot, Bernard</creatorcontrib><creatorcontrib>Le Page, Michel</creatorcontrib><creatorcontrib>Lili-Chabaane, Zohra</creatorcontrib><creatorcontrib>Zitouna-Chebbi, Rim</creatorcontrib><creatorcontrib>Boulet, Gilles</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Environmental modelling & software : with environment data news</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Farhani, Nesrine</au><au>Carreau, Julie</au><au>Kassouk, Zeineb</au><au>Mougenot, Bernard</au><au>Le Page, Michel</au><au>Lili-Chabaane, Zohra</au><au>Zitouna-Chebbi, Rim</au><au>Boulet, Gilles</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regional sub-daily stochastic weather generator based on reanalyses for surface water stress estimation in central Tunisia</atitle><jtitle>Environmental modelling & software : with environment data news</jtitle><date>2022-09</date><risdate>2022</risdate><volume>155</volume><spage>105448</spage><pages>105448-</pages><artnum>105448</artnum><issn>1364-8152</issn><eissn>1873-6726</eissn><abstract>We present MetGen: a sub-daily multi-variable stochastic weather generator implemented as an R library that can be used to perform gap-filling and to extend in time meteorological observation series. MetGen is tailored to provide surrogate series of air temperature, relative air humidity, global radiation and wind speed needed for surface water stress estimation that requires sub-daily resolution. Multiple gauged stations can be used to increase the calibration data although spatial dependence is not modeled. The approach relies on Generalized Linear Models that use, among their covariates, large-scale variables derived from ERA5 reanalyses. MetGen aims at preserving key features of the meteorological variables along with inter-variable dependencies. We illustrate the abilities of MetGen using a case study with three stations in central Tunisia. We consider as alternatives a univariate and a multivariate bias correction techniques along with the un-processed large-scale variables.
•Stochastic weather generator at sub-daily resolution available as an R library.•Gap-filling and temporal extension of multivariate meteorological observation series.•Tailored for plant water stress estimation in semi-arid areas.•Based on generalized linear models with covariates derived from ERA5 reanalyses.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.envsoft.2022.105448</doi><orcidid>https://orcid.org/0000-0002-0935-9138</orcidid><orcidid>https://orcid.org/0000-0002-3905-7560</orcidid><orcidid>https://orcid.org/0000-0002-0671-2418</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1364-8152 |
ispartof | Environmental modelling & software : with environment data news, 2022-09, Vol.155, p.105448, Article 105448 |
issn | 1364-8152 1873-6726 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03821758v1 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | bias correction Continental interfaces, environment ERA5 reanalyses Sciences of the Universe stochastic weather generator sub-daily resolution surface water stress estimation |
title | Regional sub-daily stochastic weather generator based on reanalyses for surface water stress estimation in central Tunisia |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T14%3A01%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regional%20sub-daily%20stochastic%20weather%20generator%20based%20on%20reanalyses%20for%20surface%20water%20stress%20estimation%20in%20central%20Tunisia&rft.jtitle=Environmental%20modelling%20&%20software%20:%20with%20environment%20data%20news&rft.au=Farhani,%20Nesrine&rft.date=2022-09&rft.volume=155&rft.spage=105448&rft.pages=105448-&rft.artnum=105448&rft.issn=1364-8152&rft.eissn=1873-6726&rft_id=info:doi/10.1016/j.envsoft.2022.105448&rft_dat=%3Celsevier_hal_p%3ES1364815222001542%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S1364815222001542&rfr_iscdi=true |