Cassie-Baxter to Wenzel state wetting transition: Scaling of the front velocity

We experimentally study the dynamics of water in the Cassie-Baxter state to Wenzel state transition on surfaces decorated with assemblies of micrometer-size square pillars arranged on a square lattice. The transition on the micro-patterned superhydrophobic polymer surfaces is followed with a high-sp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. E, Soft matter and biological physics Soft matter and biological physics, 2009-08, Vol.29 (4), p.391-397
Hauptverfasser: Peters, A. M., Pirat, C., Sbragaglia, M., Borkent, B. M., Wessling, M., Lohse, D., Lammertink, R. G. H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 397
container_issue 4
container_start_page 391
container_title The European physical journal. E, Soft matter and biological physics
container_volume 29
creator Peters, A. M.
Pirat, C.
Sbragaglia, M.
Borkent, B. M.
Wessling, M.
Lohse, D.
Lammertink, R. G. H.
description We experimentally study the dynamics of water in the Cassie-Baxter state to Wenzel state transition on surfaces decorated with assemblies of micrometer-size square pillars arranged on a square lattice. The transition on the micro-patterned superhydrophobic polymer surfaces is followed with a high-speed camera. Detailed analysis of the movement of the liquid during this transition reveals the wetting front velocity dependence on the geometry and material properties. We show that a decrease in gap size as well as an increase in pillar height and intrinsic material hydrophobicity result in a lower front velocity. Scaling arguments based on balancing surface forces and viscous dissipation allow us to derive a relation with which we can rescale all experimentally measured front velocities, obtained for various pattern geometries and materials, on one single curve.
doi_str_mv 10.1140/epje/i2009-10489-3
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03818276v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>734049819</sourcerecordid><originalsourceid>FETCH-LOGICAL-c454t-cbb99acbce84b8face62de316f1ba378f36dbdcc336ddd55ea51f6638ffb9f7a3</originalsourceid><addsrcrecordid>eNp9kM1OGzEURq0KVH7aF-ii8gZVLAbsscdjdxeiUipFYkER3VkezzU4moxT26GFp8chUdixutb1-b4rHYS-UHJGKSfnsJzDua8JURUlXKqKfUCHtFZ1JVXzZ2_35vQAHaU0J4SUGPuIDqgSQtFWHqLrqUnJQ3Vh_meIOAd8B-MzDDhlkwH_g5z9eI9zNGPy2YfxO76xZljvgsP5AbCLYcz4EYZgfX76hPadGRJ83s5jdHv54_f0qppd__w1ncwqyxueK9t1ShnbWZC8k85YEHUPjApHO8Na6Zjou95aVmbfNw2YhjohmHSuU6417BidbnofzKCX0S9MfNLBeH01men1jjBJZd2KR1rYbxt2GcPfFaSsFz5ZGAYzQlgl3TJOuJJUFbLekDaGlCK4XTUleu1cr53rV-f61blmJfR1W7_qFtC_RbaSC3CyBUwq7lxxaX3acXUBG8HbwrENl8rXeA9Rz8MqjkXje-dfADConRM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>734049819</pqid></control><display><type>article</type><title>Cassie-Baxter to Wenzel state wetting transition: Scaling of the front velocity</title><source>SpringerLink Journals - AutoHoldings</source><creator>Peters, A. M. ; Pirat, C. ; Sbragaglia, M. ; Borkent, B. M. ; Wessling, M. ; Lohse, D. ; Lammertink, R. G. H.</creator><creatorcontrib>Peters, A. M. ; Pirat, C. ; Sbragaglia, M. ; Borkent, B. M. ; Wessling, M. ; Lohse, D. ; Lammertink, R. G. H.</creatorcontrib><description>We experimentally study the dynamics of water in the Cassie-Baxter state to Wenzel state transition on surfaces decorated with assemblies of micrometer-size square pillars arranged on a square lattice. The transition on the micro-patterned superhydrophobic polymer surfaces is followed with a high-speed camera. Detailed analysis of the movement of the liquid during this transition reveals the wetting front velocity dependence on the geometry and material properties. We show that a decrease in gap size as well as an increase in pillar height and intrinsic material hydrophobicity result in a lower front velocity. Scaling arguments based on balancing surface forces and viscous dissipation allow us to derive a relation with which we can rescale all experimentally measured front velocities, obtained for various pattern geometries and materials, on one single curve.</description><identifier>ISSN: 1292-8941</identifier><identifier>EISSN: 1292-895X</identifier><identifier>DOI: 10.1140/epje/i2009-10489-3</identifier><identifier>PMID: 19669178</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Biological and Medical Physics ; Biophysics ; Chemistry ; Complex Fluids and Microfluidics ; Complex Systems ; Exact sciences and technology ; Fluid Dynamics ; General and physical chemistry ; Nanotechnology ; Physics ; Physics and Astronomy ; Polymer Sciences ; Regular Article ; Soft and Granular Matter ; Solid-liquid interface ; Surface physical chemistry ; Surfaces and Interfaces ; Thin Films</subject><ispartof>The European physical journal. E, Soft matter and biological physics, 2009-08, Vol.29 (4), p.391-397</ispartof><rights>EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009</rights><rights>2009 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c454t-cbb99acbce84b8face62de316f1ba378f36dbdcc336ddd55ea51f6638ffb9f7a3</citedby><cites>FETCH-LOGICAL-c454t-cbb99acbce84b8face62de316f1ba378f36dbdcc336ddd55ea51f6638ffb9f7a3</cites><orcidid>0000-0002-1508-8303</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epje/i2009-10489-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1140/epje/i2009-10489-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21965647$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19669178$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03818276$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Peters, A. M.</creatorcontrib><creatorcontrib>Pirat, C.</creatorcontrib><creatorcontrib>Sbragaglia, M.</creatorcontrib><creatorcontrib>Borkent, B. M.</creatorcontrib><creatorcontrib>Wessling, M.</creatorcontrib><creatorcontrib>Lohse, D.</creatorcontrib><creatorcontrib>Lammertink, R. G. H.</creatorcontrib><title>Cassie-Baxter to Wenzel state wetting transition: Scaling of the front velocity</title><title>The European physical journal. E, Soft matter and biological physics</title><addtitle>Eur. Phys. J. E</addtitle><addtitle>Eur Phys J E Soft Matter</addtitle><description>We experimentally study the dynamics of water in the Cassie-Baxter state to Wenzel state transition on surfaces decorated with assemblies of micrometer-size square pillars arranged on a square lattice. The transition on the micro-patterned superhydrophobic polymer surfaces is followed with a high-speed camera. Detailed analysis of the movement of the liquid during this transition reveals the wetting front velocity dependence on the geometry and material properties. We show that a decrease in gap size as well as an increase in pillar height and intrinsic material hydrophobicity result in a lower front velocity. Scaling arguments based on balancing surface forces and viscous dissipation allow us to derive a relation with which we can rescale all experimentally measured front velocities, obtained for various pattern geometries and materials, on one single curve.</description><subject>Biological and Medical Physics</subject><subject>Biophysics</subject><subject>Chemistry</subject><subject>Complex Fluids and Microfluidics</subject><subject>Complex Systems</subject><subject>Exact sciences and technology</subject><subject>Fluid Dynamics</subject><subject>General and physical chemistry</subject><subject>Nanotechnology</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polymer Sciences</subject><subject>Regular Article</subject><subject>Soft and Granular Matter</subject><subject>Solid-liquid interface</subject><subject>Surface physical chemistry</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><issn>1292-8941</issn><issn>1292-895X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OGzEURq0KVH7aF-ii8gZVLAbsscdjdxeiUipFYkER3VkezzU4moxT26GFp8chUdixutb1-b4rHYS-UHJGKSfnsJzDua8JURUlXKqKfUCHtFZ1JVXzZ2_35vQAHaU0J4SUGPuIDqgSQtFWHqLrqUnJQ3Vh_meIOAd8B-MzDDhlkwH_g5z9eI9zNGPy2YfxO76xZljvgsP5AbCLYcz4EYZgfX76hPadGRJ83s5jdHv54_f0qppd__w1ncwqyxueK9t1ShnbWZC8k85YEHUPjApHO8Na6Zjou95aVmbfNw2YhjohmHSuU6417BidbnofzKCX0S9MfNLBeH01men1jjBJZd2KR1rYbxt2GcPfFaSsFz5ZGAYzQlgl3TJOuJJUFbLekDaGlCK4XTUleu1cr53rV-f61blmJfR1W7_qFtC_RbaSC3CyBUwq7lxxaX3acXUBG8HbwrENl8rXeA9Rz8MqjkXje-dfADConRM</recordid><startdate>20090801</startdate><enddate>20090801</enddate><creator>Peters, A. M.</creator><creator>Pirat, C.</creator><creator>Sbragaglia, M.</creator><creator>Borkent, B. M.</creator><creator>Wessling, M.</creator><creator>Lohse, D.</creator><creator>Lammertink, R. G. H.</creator><general>Springer-Verlag</general><general>EDP Sciences</general><general>EDP Sciences: EPJ</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-1508-8303</orcidid></search><sort><creationdate>20090801</creationdate><title>Cassie-Baxter to Wenzel state wetting transition: Scaling of the front velocity</title><author>Peters, A. M. ; Pirat, C. ; Sbragaglia, M. ; Borkent, B. M. ; Wessling, M. ; Lohse, D. ; Lammertink, R. G. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c454t-cbb99acbce84b8face62de316f1ba378f36dbdcc336ddd55ea51f6638ffb9f7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Biological and Medical Physics</topic><topic>Biophysics</topic><topic>Chemistry</topic><topic>Complex Fluids and Microfluidics</topic><topic>Complex Systems</topic><topic>Exact sciences and technology</topic><topic>Fluid Dynamics</topic><topic>General and physical chemistry</topic><topic>Nanotechnology</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polymer Sciences</topic><topic>Regular Article</topic><topic>Soft and Granular Matter</topic><topic>Solid-liquid interface</topic><topic>Surface physical chemistry</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peters, A. M.</creatorcontrib><creatorcontrib>Pirat, C.</creatorcontrib><creatorcontrib>Sbragaglia, M.</creatorcontrib><creatorcontrib>Borkent, B. M.</creatorcontrib><creatorcontrib>Wessling, M.</creatorcontrib><creatorcontrib>Lohse, D.</creatorcontrib><creatorcontrib>Lammertink, R. G. H.</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>The European physical journal. E, Soft matter and biological physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peters, A. M.</au><au>Pirat, C.</au><au>Sbragaglia, M.</au><au>Borkent, B. M.</au><au>Wessling, M.</au><au>Lohse, D.</au><au>Lammertink, R. G. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cassie-Baxter to Wenzel state wetting transition: Scaling of the front velocity</atitle><jtitle>The European physical journal. E, Soft matter and biological physics</jtitle><stitle>Eur. Phys. J. E</stitle><addtitle>Eur Phys J E Soft Matter</addtitle><date>2009-08-01</date><risdate>2009</risdate><volume>29</volume><issue>4</issue><spage>391</spage><epage>397</epage><pages>391-397</pages><issn>1292-8941</issn><eissn>1292-895X</eissn><abstract>We experimentally study the dynamics of water in the Cassie-Baxter state to Wenzel state transition on surfaces decorated with assemblies of micrometer-size square pillars arranged on a square lattice. The transition on the micro-patterned superhydrophobic polymer surfaces is followed with a high-speed camera. Detailed analysis of the movement of the liquid during this transition reveals the wetting front velocity dependence on the geometry and material properties. We show that a decrease in gap size as well as an increase in pillar height and intrinsic material hydrophobicity result in a lower front velocity. Scaling arguments based on balancing surface forces and viscous dissipation allow us to derive a relation with which we can rescale all experimentally measured front velocities, obtained for various pattern geometries and materials, on one single curve.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>19669178</pmid><doi>10.1140/epje/i2009-10489-3</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-1508-8303</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1292-8941
ispartof The European physical journal. E, Soft matter and biological physics, 2009-08, Vol.29 (4), p.391-397
issn 1292-8941
1292-895X
language eng
recordid cdi_hal_primary_oai_HAL_hal_03818276v1
source SpringerLink Journals - AutoHoldings
subjects Biological and Medical Physics
Biophysics
Chemistry
Complex Fluids and Microfluidics
Complex Systems
Exact sciences and technology
Fluid Dynamics
General and physical chemistry
Nanotechnology
Physics
Physics and Astronomy
Polymer Sciences
Regular Article
Soft and Granular Matter
Solid-liquid interface
Surface physical chemistry
Surfaces and Interfaces
Thin Films
title Cassie-Baxter to Wenzel state wetting transition: Scaling of the front velocity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A54%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cassie-Baxter%20to%20Wenzel%20state%20wetting%20transition:%20Scaling%20of%20the%20front%20velocity&rft.jtitle=The%20European%20physical%20journal.%20E,%20Soft%20matter%20and%20biological%20physics&rft.au=Peters,%20A.%20M.&rft.date=2009-08-01&rft.volume=29&rft.issue=4&rft.spage=391&rft.epage=397&rft.pages=391-397&rft.issn=1292-8941&rft.eissn=1292-895X&rft_id=info:doi/10.1140/epje/i2009-10489-3&rft_dat=%3Cproquest_hal_p%3E734049819%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=734049819&rft_id=info:pmid/19669178&rfr_iscdi=true