Cassie-Baxter to Wenzel state wetting transition: Scaling of the front velocity
We experimentally study the dynamics of water in the Cassie-Baxter state to Wenzel state transition on surfaces decorated with assemblies of micrometer-size square pillars arranged on a square lattice. The transition on the micro-patterned superhydrophobic polymer surfaces is followed with a high-sp...
Gespeichert in:
Veröffentlicht in: | The European physical journal. E, Soft matter and biological physics Soft matter and biological physics, 2009-08, Vol.29 (4), p.391-397 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 397 |
---|---|
container_issue | 4 |
container_start_page | 391 |
container_title | The European physical journal. E, Soft matter and biological physics |
container_volume | 29 |
creator | Peters, A. M. Pirat, C. Sbragaglia, M. Borkent, B. M. Wessling, M. Lohse, D. Lammertink, R. G. H. |
description | We experimentally study the dynamics of water in the Cassie-Baxter state to Wenzel state transition on surfaces decorated with assemblies of micrometer-size square pillars arranged on a square lattice. The transition on the micro-patterned superhydrophobic polymer surfaces is followed with a high-speed camera. Detailed analysis of the movement of the liquid during this transition reveals the wetting front velocity dependence on the geometry and material properties. We show that a decrease in gap size as well as an increase in pillar height and intrinsic material hydrophobicity result in a lower front velocity. Scaling arguments based on balancing surface forces and viscous dissipation allow us to derive a relation with which we can rescale all experimentally measured front velocities, obtained for various pattern geometries and materials, on one single curve. |
doi_str_mv | 10.1140/epje/i2009-10489-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03818276v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>734049819</sourcerecordid><originalsourceid>FETCH-LOGICAL-c454t-cbb99acbce84b8face62de316f1ba378f36dbdcc336ddd55ea51f6638ffb9f7a3</originalsourceid><addsrcrecordid>eNp9kM1OGzEURq0KVH7aF-ii8gZVLAbsscdjdxeiUipFYkER3VkezzU4moxT26GFp8chUdixutb1-b4rHYS-UHJGKSfnsJzDua8JURUlXKqKfUCHtFZ1JVXzZ2_35vQAHaU0J4SUGPuIDqgSQtFWHqLrqUnJQ3Vh_meIOAd8B-MzDDhlkwH_g5z9eI9zNGPy2YfxO76xZljvgsP5AbCLYcz4EYZgfX76hPadGRJ83s5jdHv54_f0qppd__w1ncwqyxueK9t1ShnbWZC8k85YEHUPjApHO8Na6Zjou95aVmbfNw2YhjohmHSuU6417BidbnofzKCX0S9MfNLBeH01men1jjBJZd2KR1rYbxt2GcPfFaSsFz5ZGAYzQlgl3TJOuJJUFbLekDaGlCK4XTUleu1cr53rV-f61blmJfR1W7_qFtC_RbaSC3CyBUwq7lxxaX3acXUBG8HbwrENl8rXeA9Rz8MqjkXje-dfADConRM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>734049819</pqid></control><display><type>article</type><title>Cassie-Baxter to Wenzel state wetting transition: Scaling of the front velocity</title><source>SpringerLink Journals - AutoHoldings</source><creator>Peters, A. M. ; Pirat, C. ; Sbragaglia, M. ; Borkent, B. M. ; Wessling, M. ; Lohse, D. ; Lammertink, R. G. H.</creator><creatorcontrib>Peters, A. M. ; Pirat, C. ; Sbragaglia, M. ; Borkent, B. M. ; Wessling, M. ; Lohse, D. ; Lammertink, R. G. H.</creatorcontrib><description>We experimentally study the dynamics of water in the Cassie-Baxter state to Wenzel state transition on surfaces decorated with assemblies of micrometer-size square pillars arranged on a square lattice. The transition on the micro-patterned superhydrophobic polymer surfaces is followed with a high-speed camera. Detailed analysis of the movement of the liquid during this transition reveals the wetting front velocity dependence on the geometry and material properties. We show that a decrease in gap size as well as an increase in pillar height and intrinsic material hydrophobicity result in a lower front velocity. Scaling arguments based on balancing surface forces and viscous dissipation allow us to derive a relation with which we can rescale all experimentally measured front velocities, obtained for various pattern geometries and materials, on one single curve.</description><identifier>ISSN: 1292-8941</identifier><identifier>EISSN: 1292-895X</identifier><identifier>DOI: 10.1140/epje/i2009-10489-3</identifier><identifier>PMID: 19669178</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Biological and Medical Physics ; Biophysics ; Chemistry ; Complex Fluids and Microfluidics ; Complex Systems ; Exact sciences and technology ; Fluid Dynamics ; General and physical chemistry ; Nanotechnology ; Physics ; Physics and Astronomy ; Polymer Sciences ; Regular Article ; Soft and Granular Matter ; Solid-liquid interface ; Surface physical chemistry ; Surfaces and Interfaces ; Thin Films</subject><ispartof>The European physical journal. E, Soft matter and biological physics, 2009-08, Vol.29 (4), p.391-397</ispartof><rights>EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009</rights><rights>2009 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c454t-cbb99acbce84b8face62de316f1ba378f36dbdcc336ddd55ea51f6638ffb9f7a3</citedby><cites>FETCH-LOGICAL-c454t-cbb99acbce84b8face62de316f1ba378f36dbdcc336ddd55ea51f6638ffb9f7a3</cites><orcidid>0000-0002-1508-8303</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epje/i2009-10489-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1140/epje/i2009-10489-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21965647$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19669178$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03818276$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Peters, A. M.</creatorcontrib><creatorcontrib>Pirat, C.</creatorcontrib><creatorcontrib>Sbragaglia, M.</creatorcontrib><creatorcontrib>Borkent, B. M.</creatorcontrib><creatorcontrib>Wessling, M.</creatorcontrib><creatorcontrib>Lohse, D.</creatorcontrib><creatorcontrib>Lammertink, R. G. H.</creatorcontrib><title>Cassie-Baxter to Wenzel state wetting transition: Scaling of the front velocity</title><title>The European physical journal. E, Soft matter and biological physics</title><addtitle>Eur. Phys. J. E</addtitle><addtitle>Eur Phys J E Soft Matter</addtitle><description>We experimentally study the dynamics of water in the Cassie-Baxter state to Wenzel state transition on surfaces decorated with assemblies of micrometer-size square pillars arranged on a square lattice. The transition on the micro-patterned superhydrophobic polymer surfaces is followed with a high-speed camera. Detailed analysis of the movement of the liquid during this transition reveals the wetting front velocity dependence on the geometry and material properties. We show that a decrease in gap size as well as an increase in pillar height and intrinsic material hydrophobicity result in a lower front velocity. Scaling arguments based on balancing surface forces and viscous dissipation allow us to derive a relation with which we can rescale all experimentally measured front velocities, obtained for various pattern geometries and materials, on one single curve.</description><subject>Biological and Medical Physics</subject><subject>Biophysics</subject><subject>Chemistry</subject><subject>Complex Fluids and Microfluidics</subject><subject>Complex Systems</subject><subject>Exact sciences and technology</subject><subject>Fluid Dynamics</subject><subject>General and physical chemistry</subject><subject>Nanotechnology</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polymer Sciences</subject><subject>Regular Article</subject><subject>Soft and Granular Matter</subject><subject>Solid-liquid interface</subject><subject>Surface physical chemistry</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><issn>1292-8941</issn><issn>1292-895X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OGzEURq0KVH7aF-ii8gZVLAbsscdjdxeiUipFYkER3VkezzU4moxT26GFp8chUdixutb1-b4rHYS-UHJGKSfnsJzDua8JURUlXKqKfUCHtFZ1JVXzZ2_35vQAHaU0J4SUGPuIDqgSQtFWHqLrqUnJQ3Vh_meIOAd8B-MzDDhlkwH_g5z9eI9zNGPy2YfxO76xZljvgsP5AbCLYcz4EYZgfX76hPadGRJ83s5jdHv54_f0qppd__w1ncwqyxueK9t1ShnbWZC8k85YEHUPjApHO8Na6Zjou95aVmbfNw2YhjohmHSuU6417BidbnofzKCX0S9MfNLBeH01men1jjBJZd2KR1rYbxt2GcPfFaSsFz5ZGAYzQlgl3TJOuJJUFbLekDaGlCK4XTUleu1cr53rV-f61blmJfR1W7_qFtC_RbaSC3CyBUwq7lxxaX3acXUBG8HbwrENl8rXeA9Rz8MqjkXje-dfADConRM</recordid><startdate>20090801</startdate><enddate>20090801</enddate><creator>Peters, A. M.</creator><creator>Pirat, C.</creator><creator>Sbragaglia, M.</creator><creator>Borkent, B. M.</creator><creator>Wessling, M.</creator><creator>Lohse, D.</creator><creator>Lammertink, R. G. H.</creator><general>Springer-Verlag</general><general>EDP Sciences</general><general>EDP Sciences: EPJ</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-1508-8303</orcidid></search><sort><creationdate>20090801</creationdate><title>Cassie-Baxter to Wenzel state wetting transition: Scaling of the front velocity</title><author>Peters, A. M. ; Pirat, C. ; Sbragaglia, M. ; Borkent, B. M. ; Wessling, M. ; Lohse, D. ; Lammertink, R. G. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c454t-cbb99acbce84b8face62de316f1ba378f36dbdcc336ddd55ea51f6638ffb9f7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Biological and Medical Physics</topic><topic>Biophysics</topic><topic>Chemistry</topic><topic>Complex Fluids and Microfluidics</topic><topic>Complex Systems</topic><topic>Exact sciences and technology</topic><topic>Fluid Dynamics</topic><topic>General and physical chemistry</topic><topic>Nanotechnology</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polymer Sciences</topic><topic>Regular Article</topic><topic>Soft and Granular Matter</topic><topic>Solid-liquid interface</topic><topic>Surface physical chemistry</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peters, A. M.</creatorcontrib><creatorcontrib>Pirat, C.</creatorcontrib><creatorcontrib>Sbragaglia, M.</creatorcontrib><creatorcontrib>Borkent, B. M.</creatorcontrib><creatorcontrib>Wessling, M.</creatorcontrib><creatorcontrib>Lohse, D.</creatorcontrib><creatorcontrib>Lammertink, R. G. H.</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>The European physical journal. E, Soft matter and biological physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peters, A. M.</au><au>Pirat, C.</au><au>Sbragaglia, M.</au><au>Borkent, B. M.</au><au>Wessling, M.</au><au>Lohse, D.</au><au>Lammertink, R. G. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cassie-Baxter to Wenzel state wetting transition: Scaling of the front velocity</atitle><jtitle>The European physical journal. E, Soft matter and biological physics</jtitle><stitle>Eur. Phys. J. E</stitle><addtitle>Eur Phys J E Soft Matter</addtitle><date>2009-08-01</date><risdate>2009</risdate><volume>29</volume><issue>4</issue><spage>391</spage><epage>397</epage><pages>391-397</pages><issn>1292-8941</issn><eissn>1292-895X</eissn><abstract>We experimentally study the dynamics of water in the Cassie-Baxter state to Wenzel state transition on surfaces decorated with assemblies of micrometer-size square pillars arranged on a square lattice. The transition on the micro-patterned superhydrophobic polymer surfaces is followed with a high-speed camera. Detailed analysis of the movement of the liquid during this transition reveals the wetting front velocity dependence on the geometry and material properties. We show that a decrease in gap size as well as an increase in pillar height and intrinsic material hydrophobicity result in a lower front velocity. Scaling arguments based on balancing surface forces and viscous dissipation allow us to derive a relation with which we can rescale all experimentally measured front velocities, obtained for various pattern geometries and materials, on one single curve.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>19669178</pmid><doi>10.1140/epje/i2009-10489-3</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-1508-8303</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1292-8941 |
ispartof | The European physical journal. E, Soft matter and biological physics, 2009-08, Vol.29 (4), p.391-397 |
issn | 1292-8941 1292-895X |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03818276v1 |
source | SpringerLink Journals - AutoHoldings |
subjects | Biological and Medical Physics Biophysics Chemistry Complex Fluids and Microfluidics Complex Systems Exact sciences and technology Fluid Dynamics General and physical chemistry Nanotechnology Physics Physics and Astronomy Polymer Sciences Regular Article Soft and Granular Matter Solid-liquid interface Surface physical chemistry Surfaces and Interfaces Thin Films |
title | Cassie-Baxter to Wenzel state wetting transition: Scaling of the front velocity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A54%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cassie-Baxter%20to%20Wenzel%20state%20wetting%20transition:%20Scaling%20of%20the%20front%20velocity&rft.jtitle=The%20European%20physical%20journal.%20E,%20Soft%20matter%20and%20biological%20physics&rft.au=Peters,%20A.%20M.&rft.date=2009-08-01&rft.volume=29&rft.issue=4&rft.spage=391&rft.epage=397&rft.pages=391-397&rft.issn=1292-8941&rft.eissn=1292-895X&rft_id=info:doi/10.1140/epje/i2009-10489-3&rft_dat=%3Cproquest_hal_p%3E734049819%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=734049819&rft_id=info:pmid/19669178&rfr_iscdi=true |