Study of the impact of the Îlot Tison weir on bedload transport of the Clain River (Poitiers, France) using BASEMENT software

An increasing number of numerical morphodynamic models predict the evolution of bed configuration over a wide spectrum of spatial and temporal scales due to the development of advanced numerical methods and increased computational power. The increasing use of numerical morphodynamic models is closel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:River research and applications 2022-11, Vol.38 (9), p.1555-1568
1. Verfasser: Beaudoin, Anthony
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1568
container_issue 9
container_start_page 1555
container_title River research and applications
container_volume 38
creator Beaudoin, Anthony
description An increasing number of numerical morphodynamic models predict the evolution of bed configuration over a wide spectrum of spatial and temporal scales due to the development of advanced numerical methods and increased computational power. The increasing use of numerical morphodynamic models is closely related to the growing availability of high‐resolution river data sets. Today, the main difficulty in using numerical morphodynamic models is that they are used by nonspecialists modellers or modellers that are not morphodynamics specialists, which can lead to errors. These errors include inadequate parameterization of processes for applications at larger spatial and temporal scales, confusion between physical and numerical phenomena when interpreting numerical results, and the assumption that there is a need for a huge volume of data for developing numerical morphodynamic models. The present work aims to achieve two objectives. To avoid these errors, the first objective is to outline the steps in the development of numerical morphodynamic models. The development of numerical morphodynamic models is now possible with public databases. The second objective is to show the effectiveness of BASEMENT to study the impact of existing and future structures on the river hydrodynamics and bedload transport using case study examples.
doi_str_mv 10.1002/rra.4029
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03818004v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2731036111</sourcerecordid><originalsourceid>FETCH-LOGICAL-a2419-71cb1b25526a272a8fb825e84394f345eb6e99aac181a37f4d5ff439d1ecd2873</originalsourceid><addsrcrecordid>eNp10d1KwzAUB_AiCs4p-AgBbybYmZN-pZd1bE6YH2zzOqRt4jK6pibtxm58BF_KF7NzujuvzjnJj8OBv-NcAu4DxuTWGN73MYmPnA4EXuCCH0bHhz6IT50za5cYQ0Rj2nE-ZnWTb5GWqF4IpFYVz-q_6euz0DWaK6tLtBHKoLamIi80z1FteGkrbQ54UHBVoqlaC4N6L1rVShh7g0aty8Q1aqwq39BdMhs-Dp_myGpZb7gR586J5IUVF7-167yOhvPB2J083z8MkonLiQ-xG0GWQkqCgIScRIRTmVISCOp7sS89PxBpKOKY8wwocC-Sfh5I2X7mILKc0MjrOtf7vQtesMqoFTdbprli42TCdm_Yo0Ax9tfQ2qu9rYx-b4St2VI3pmzPYyTyAHshwE719ioz2loj5GEtYLZLgrVJsF0SLXX3dKMKsf3Xsek0-fHf6MmInQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2731036111</pqid></control><display><type>article</type><title>Study of the impact of the Îlot Tison weir on bedload transport of the Clain River (Poitiers, France) using BASEMENT software</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Beaudoin, Anthony</creator><creatorcontrib>Beaudoin, Anthony</creatorcontrib><description>An increasing number of numerical morphodynamic models predict the evolution of bed configuration over a wide spectrum of spatial and temporal scales due to the development of advanced numerical methods and increased computational power. The increasing use of numerical morphodynamic models is closely related to the growing availability of high‐resolution river data sets. Today, the main difficulty in using numerical morphodynamic models is that they are used by nonspecialists modellers or modellers that are not morphodynamics specialists, which can lead to errors. These errors include inadequate parameterization of processes for applications at larger spatial and temporal scales, confusion between physical and numerical phenomena when interpreting numerical results, and the assumption that there is a need for a huge volume of data for developing numerical morphodynamic models. The present work aims to achieve two objectives. To avoid these errors, the first objective is to outline the steps in the development of numerical morphodynamic models. The development of numerical morphodynamic models is now possible with public databases. The second objective is to show the effectiveness of BASEMENT to study the impact of existing and future structures on the river hydrodynamics and bedload transport using case study examples.</description><identifier>ISSN: 1535-1459</identifier><identifier>EISSN: 1535-1467</identifier><identifier>DOI: 10.1002/rra.4029</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>BASEMENT software ; Basements ; Bed load ; Bedload transport ; Computer applications ; Errors ; Fluid mechanics ; Hydrodynamics ; Mathematical models ; Mechanics ; Numerical methods ; numerical morphodynamic model ; Numerical prediction ; Parameterization ; Physics ; river hydrodynamics ; river management ; Rivers ; sediment continuity ; Sediment transport ; Weirs</subject><ispartof>River research and applications, 2022-11, Vol.38 (9), p.1555-1568</ispartof><rights>2022 John Wiley &amp; Sons Ltd.</rights><rights>2022 John Wiley &amp; Sons, Ltd.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a2419-71cb1b25526a272a8fb825e84394f345eb6e99aac181a37f4d5ff439d1ecd2873</cites><orcidid>0000-0002-2886-1094</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frra.4029$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frra.4029$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03818004$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Beaudoin, Anthony</creatorcontrib><title>Study of the impact of the Îlot Tison weir on bedload transport of the Clain River (Poitiers, France) using BASEMENT software</title><title>River research and applications</title><description>An increasing number of numerical morphodynamic models predict the evolution of bed configuration over a wide spectrum of spatial and temporal scales due to the development of advanced numerical methods and increased computational power. The increasing use of numerical morphodynamic models is closely related to the growing availability of high‐resolution river data sets. Today, the main difficulty in using numerical morphodynamic models is that they are used by nonspecialists modellers or modellers that are not morphodynamics specialists, which can lead to errors. These errors include inadequate parameterization of processes for applications at larger spatial and temporal scales, confusion between physical and numerical phenomena when interpreting numerical results, and the assumption that there is a need for a huge volume of data for developing numerical morphodynamic models. The present work aims to achieve two objectives. To avoid these errors, the first objective is to outline the steps in the development of numerical morphodynamic models. The development of numerical morphodynamic models is now possible with public databases. The second objective is to show the effectiveness of BASEMENT to study the impact of existing and future structures on the river hydrodynamics and bedload transport using case study examples.</description><subject>BASEMENT software</subject><subject>Basements</subject><subject>Bed load</subject><subject>Bedload transport</subject><subject>Computer applications</subject><subject>Errors</subject><subject>Fluid mechanics</subject><subject>Hydrodynamics</subject><subject>Mathematical models</subject><subject>Mechanics</subject><subject>Numerical methods</subject><subject>numerical morphodynamic model</subject><subject>Numerical prediction</subject><subject>Parameterization</subject><subject>Physics</subject><subject>river hydrodynamics</subject><subject>river management</subject><subject>Rivers</subject><subject>sediment continuity</subject><subject>Sediment transport</subject><subject>Weirs</subject><issn>1535-1459</issn><issn>1535-1467</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp10d1KwzAUB_AiCs4p-AgBbybYmZN-pZd1bE6YH2zzOqRt4jK6pibtxm58BF_KF7NzujuvzjnJj8OBv-NcAu4DxuTWGN73MYmPnA4EXuCCH0bHhz6IT50za5cYQ0Rj2nE-ZnWTb5GWqF4IpFYVz-q_6euz0DWaK6tLtBHKoLamIi80z1FteGkrbQ54UHBVoqlaC4N6L1rVShh7g0aty8Q1aqwq39BdMhs-Dp_myGpZb7gR586J5IUVF7-167yOhvPB2J083z8MkonLiQ-xG0GWQkqCgIScRIRTmVISCOp7sS89PxBpKOKY8wwocC-Sfh5I2X7mILKc0MjrOtf7vQtesMqoFTdbprli42TCdm_Yo0Ax9tfQ2qu9rYx-b4St2VI3pmzPYyTyAHshwE719ioz2loj5GEtYLZLgrVJsF0SLXX3dKMKsf3Xsek0-fHf6MmInQ</recordid><startdate>202211</startdate><enddate>202211</enddate><creator>Beaudoin, Anthony</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H95</scope><scope>H96</scope><scope>L.G</scope><scope>SOI</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-2886-1094</orcidid></search><sort><creationdate>202211</creationdate><title>Study of the impact of the Îlot Tison weir on bedload transport of the Clain River (Poitiers, France) using BASEMENT software</title><author>Beaudoin, Anthony</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a2419-71cb1b25526a272a8fb825e84394f345eb6e99aac181a37f4d5ff439d1ecd2873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>BASEMENT software</topic><topic>Basements</topic><topic>Bed load</topic><topic>Bedload transport</topic><topic>Computer applications</topic><topic>Errors</topic><topic>Fluid mechanics</topic><topic>Hydrodynamics</topic><topic>Mathematical models</topic><topic>Mechanics</topic><topic>Numerical methods</topic><topic>numerical morphodynamic model</topic><topic>Numerical prediction</topic><topic>Parameterization</topic><topic>Physics</topic><topic>river hydrodynamics</topic><topic>river management</topic><topic>Rivers</topic><topic>sediment continuity</topic><topic>Sediment transport</topic><topic>Weirs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beaudoin, Anthony</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>River research and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beaudoin, Anthony</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study of the impact of the Îlot Tison weir on bedload transport of the Clain River (Poitiers, France) using BASEMENT software</atitle><jtitle>River research and applications</jtitle><date>2022-11</date><risdate>2022</risdate><volume>38</volume><issue>9</issue><spage>1555</spage><epage>1568</epage><pages>1555-1568</pages><issn>1535-1459</issn><eissn>1535-1467</eissn><abstract>An increasing number of numerical morphodynamic models predict the evolution of bed configuration over a wide spectrum of spatial and temporal scales due to the development of advanced numerical methods and increased computational power. The increasing use of numerical morphodynamic models is closely related to the growing availability of high‐resolution river data sets. Today, the main difficulty in using numerical morphodynamic models is that they are used by nonspecialists modellers or modellers that are not morphodynamics specialists, which can lead to errors. These errors include inadequate parameterization of processes for applications at larger spatial and temporal scales, confusion between physical and numerical phenomena when interpreting numerical results, and the assumption that there is a need for a huge volume of data for developing numerical morphodynamic models. The present work aims to achieve two objectives. To avoid these errors, the first objective is to outline the steps in the development of numerical morphodynamic models. The development of numerical morphodynamic models is now possible with public databases. The second objective is to show the effectiveness of BASEMENT to study the impact of existing and future structures on the river hydrodynamics and bedload transport using case study examples.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/rra.4029</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-2886-1094</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1535-1459
ispartof River research and applications, 2022-11, Vol.38 (9), p.1555-1568
issn 1535-1459
1535-1467
language eng
recordid cdi_hal_primary_oai_HAL_hal_03818004v1
source Wiley Online Library Journals Frontfile Complete
subjects BASEMENT software
Basements
Bed load
Bedload transport
Computer applications
Errors
Fluid mechanics
Hydrodynamics
Mathematical models
Mechanics
Numerical methods
numerical morphodynamic model
Numerical prediction
Parameterization
Physics
river hydrodynamics
river management
Rivers
sediment continuity
Sediment transport
Weirs
title Study of the impact of the Îlot Tison weir on bedload transport of the Clain River (Poitiers, France) using BASEMENT software
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T23%3A47%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20of%20the%20impact%20of%20the%20%C3%8Elot%20Tison%20weir%20on%20bedload%20transport%20of%20the%20Clain%20River%20(Poitiers,%20France)%20using%20BASEMENT%20software&rft.jtitle=River%20research%20and%20applications&rft.au=Beaudoin,%20Anthony&rft.date=2022-11&rft.volume=38&rft.issue=9&rft.spage=1555&rft.epage=1568&rft.pages=1555-1568&rft.issn=1535-1459&rft.eissn=1535-1467&rft_id=info:doi/10.1002/rra.4029&rft_dat=%3Cproquest_hal_p%3E2731036111%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2731036111&rft_id=info:pmid/&rfr_iscdi=true