Starting the engine of the powerhouse: mitochondrial transcription and beyond
Mitochondria are central hubs for cellular metabolism, coordinating a variety of metabolic reactions crucial for human health. Mitochondria provide most of the cellular energy via their oxidative phosphorylation (OXPHOS) system, which requires the coordinated expression of genes encoded by both the...
Gespeichert in:
Veröffentlicht in: | Biological chemistry 2022-07, Vol.403 (8), p.779-805 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 805 |
---|---|
container_issue | 8 |
container_start_page | 779 |
container_title | Biological chemistry |
container_volume | 403 |
creator | Miranda, Maria Bonekamp, Nina A. Kühl, Inge |
description | Mitochondria are central hubs for cellular metabolism, coordinating a variety of metabolic reactions crucial for human health. Mitochondria provide most of the cellular energy via their oxidative phosphorylation (OXPHOS) system, which requires the coordinated expression of genes encoded by both the nuclear (nDNA) and mitochondrial genomes (mtDNA). Transcription of mtDNA is not only essential for the biogenesis of the OXPHOS system, but also generates RNA primers necessary to initiate mtDNA replication. Like the prokaryotic system, mitochondria have no membrane-based compartmentalization to separate the different steps of mtDNA maintenance and expression and depend entirely on nDNA-encoded factors imported into the organelle. Our understanding of mitochondrial transcription in mammalian cells has largely progressed, but the mechanisms regulating mtDNA gene expression are still poorly understood despite their profound importance for human disease. Here, we review mechanisms of mitochondrial gene expression with a focus on the recent findings in the field of mammalian mtDNA transcription and disease phenotypes caused by defects in proteins involved in this process. |
doi_str_mv | 10.1515/hsz-2021-0416 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03815606v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2732546890</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-552decb58b80a7601544c03576204f3bce24ec28b35a6c2827cfe4076e898cd53</originalsourceid><addsrcrecordid>eNptkc1v1DAQxS0EoqVw5IoicYFDYPwxTsKhUlUBrbSIA3C2HGeySZW1Fzuh2v719XZLKyFOM-P56Y2fHmOvOXzgyPHjkG5KAYKXoLh-wo65klWpJMendz0vdSXhiL1I6QoAalDyOTuSKBFVo4_Ztx-zjfPo18U8UEF-PXoqQn83bcM1xSEsiT4Vm3EObgi-i6Odijlan1wct_MYfGF9V7S0y8uX7Flvp0Sv7usJ-_Xl88_zi3L1_evl-dmqdEo1c4koOnIt1m0NttLAUSkHEistQPWydSQUOVG3Eq3OVVSuJwWVprqpXYfyhL0_6A52Mts4bmzcmWBHc3G2Mvs3kDVHDfoPz-y7A7uN4fdCaTabMTmaJuspezNCK6wRAVVG3_6DXoUl-uzEiEoKVLpuIFPlgXIxpBSpf_gBB7PPxORMzD4Ts88k82_uVZd2Q90D_TeEDJwegGs7zRQ7Wsdll5vH6_8VVtmkaaqqkbeAjpoD</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2732546890</pqid></control><display><type>article</type><title>Starting the engine of the powerhouse: mitochondrial transcription and beyond</title><source>De Gruyter journals</source><creator>Miranda, Maria ; Bonekamp, Nina A. ; Kühl, Inge</creator><creatorcontrib>Miranda, Maria ; Bonekamp, Nina A. ; Kühl, Inge</creatorcontrib><description>Mitochondria are central hubs for cellular metabolism, coordinating a variety of metabolic reactions crucial for human health. Mitochondria provide most of the cellular energy via their oxidative phosphorylation (OXPHOS) system, which requires the coordinated expression of genes encoded by both the nuclear (nDNA) and mitochondrial genomes (mtDNA). Transcription of mtDNA is not only essential for the biogenesis of the OXPHOS system, but also generates RNA primers necessary to initiate mtDNA replication. Like the prokaryotic system, mitochondria have no membrane-based compartmentalization to separate the different steps of mtDNA maintenance and expression and depend entirely on nDNA-encoded factors imported into the organelle. Our understanding of mitochondrial transcription in mammalian cells has largely progressed, but the mechanisms regulating mtDNA gene expression are still poorly understood despite their profound importance for human disease. Here, we review mechanisms of mitochondrial gene expression with a focus on the recent findings in the field of mammalian mtDNA transcription and disease phenotypes caused by defects in proteins involved in this process.</description><identifier>ISSN: 1431-6730</identifier><identifier>EISSN: 1437-4315</identifier><identifier>DOI: 10.1515/hsz-2021-0416</identifier><identifier>PMID: 35355496</identifier><language>eng</language><publisher>Germany: De Gruyter</publisher><subject>Biochemistry, Molecular Biology ; Gene expression ; Genomes ; Genomics ; inhibitor of mitochondrial transcription ; Life Sciences ; Mammalian cells ; Mammals ; Metabolism ; Mitochondria ; mitochondrial disease ; Mitochondrial DNA ; mitochondrial gene expression ; mitochondrial transcription ; Oxidative phosphorylation ; Phenotypes ; Phosphorylation ; PPR proteins ; Transcription</subject><ispartof>Biological chemistry, 2022-07, Vol.403 (8), p.779-805</ispartof><rights>2022 Maria Miranda et al., published by De Gruyter, Berlin/Boston.</rights><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-552decb58b80a7601544c03576204f3bce24ec28b35a6c2827cfe4076e898cd53</citedby><cites>FETCH-LOGICAL-c449t-552decb58b80a7601544c03576204f3bce24ec28b35a6c2827cfe4076e898cd53</cites><orcidid>0000-0002-0817-553X ; 0000-0001-9748-8089 ; 0000-0003-4797-0859</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.degruyter.com/document/doi/10.1515/hsz-2021-0416/pdf$$EPDF$$P50$$Gwalterdegruyter$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.degruyter.com/document/doi/10.1515/hsz-2021-0416/html$$EHTML$$P50$$Gwalterdegruyter$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,66500,68284</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35355496$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03815606$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Miranda, Maria</creatorcontrib><creatorcontrib>Bonekamp, Nina A.</creatorcontrib><creatorcontrib>Kühl, Inge</creatorcontrib><title>Starting the engine of the powerhouse: mitochondrial transcription and beyond</title><title>Biological chemistry</title><addtitle>Biol Chem</addtitle><description>Mitochondria are central hubs for cellular metabolism, coordinating a variety of metabolic reactions crucial for human health. Mitochondria provide most of the cellular energy via their oxidative phosphorylation (OXPHOS) system, which requires the coordinated expression of genes encoded by both the nuclear (nDNA) and mitochondrial genomes (mtDNA). Transcription of mtDNA is not only essential for the biogenesis of the OXPHOS system, but also generates RNA primers necessary to initiate mtDNA replication. Like the prokaryotic system, mitochondria have no membrane-based compartmentalization to separate the different steps of mtDNA maintenance and expression and depend entirely on nDNA-encoded factors imported into the organelle. Our understanding of mitochondrial transcription in mammalian cells has largely progressed, but the mechanisms regulating mtDNA gene expression are still poorly understood despite their profound importance for human disease. Here, we review mechanisms of mitochondrial gene expression with a focus on the recent findings in the field of mammalian mtDNA transcription and disease phenotypes caused by defects in proteins involved in this process.</description><subject>Biochemistry, Molecular Biology</subject><subject>Gene expression</subject><subject>Genomes</subject><subject>Genomics</subject><subject>inhibitor of mitochondrial transcription</subject><subject>Life Sciences</subject><subject>Mammalian cells</subject><subject>Mammals</subject><subject>Metabolism</subject><subject>Mitochondria</subject><subject>mitochondrial disease</subject><subject>Mitochondrial DNA</subject><subject>mitochondrial gene expression</subject><subject>mitochondrial transcription</subject><subject>Oxidative phosphorylation</subject><subject>Phenotypes</subject><subject>Phosphorylation</subject><subject>PPR proteins</subject><subject>Transcription</subject><issn>1431-6730</issn><issn>1437-4315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNptkc1v1DAQxS0EoqVw5IoicYFDYPwxTsKhUlUBrbSIA3C2HGeySZW1Fzuh2v719XZLKyFOM-P56Y2fHmOvOXzgyPHjkG5KAYKXoLh-wo65klWpJMendz0vdSXhiL1I6QoAalDyOTuSKBFVo4_Ztx-zjfPo18U8UEF-PXoqQn83bcM1xSEsiT4Vm3EObgi-i6Odijlan1wct_MYfGF9V7S0y8uX7Flvp0Sv7usJ-_Xl88_zi3L1_evl-dmqdEo1c4koOnIt1m0NttLAUSkHEistQPWydSQUOVG3Eq3OVVSuJwWVprqpXYfyhL0_6A52Mts4bmzcmWBHc3G2Mvs3kDVHDfoPz-y7A7uN4fdCaTabMTmaJuspezNCK6wRAVVG3_6DXoUl-uzEiEoKVLpuIFPlgXIxpBSpf_gBB7PPxORMzD4Ts88k82_uVZd2Q90D_TeEDJwegGs7zRQ7Wsdll5vH6_8VVtmkaaqqkbeAjpoD</recordid><startdate>20220726</startdate><enddate>20220726</enddate><creator>Miranda, Maria</creator><creator>Bonekamp, Nina A.</creator><creator>Kühl, Inge</creator><general>De Gruyter</general><general>Walter de Gruyter GmbH</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-0817-553X</orcidid><orcidid>https://orcid.org/0000-0001-9748-8089</orcidid><orcidid>https://orcid.org/0000-0003-4797-0859</orcidid></search><sort><creationdate>20220726</creationdate><title>Starting the engine of the powerhouse: mitochondrial transcription and beyond</title><author>Miranda, Maria ; Bonekamp, Nina A. ; Kühl, Inge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-552decb58b80a7601544c03576204f3bce24ec28b35a6c2827cfe4076e898cd53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biochemistry, Molecular Biology</topic><topic>Gene expression</topic><topic>Genomes</topic><topic>Genomics</topic><topic>inhibitor of mitochondrial transcription</topic><topic>Life Sciences</topic><topic>Mammalian cells</topic><topic>Mammals</topic><topic>Metabolism</topic><topic>Mitochondria</topic><topic>mitochondrial disease</topic><topic>Mitochondrial DNA</topic><topic>mitochondrial gene expression</topic><topic>mitochondrial transcription</topic><topic>Oxidative phosphorylation</topic><topic>Phenotypes</topic><topic>Phosphorylation</topic><topic>PPR proteins</topic><topic>Transcription</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miranda, Maria</creatorcontrib><creatorcontrib>Bonekamp, Nina A.</creatorcontrib><creatorcontrib>Kühl, Inge</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miranda, Maria</au><au>Bonekamp, Nina A.</au><au>Kühl, Inge</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Starting the engine of the powerhouse: mitochondrial transcription and beyond</atitle><jtitle>Biological chemistry</jtitle><addtitle>Biol Chem</addtitle><date>2022-07-26</date><risdate>2022</risdate><volume>403</volume><issue>8</issue><spage>779</spage><epage>805</epage><pages>779-805</pages><issn>1431-6730</issn><eissn>1437-4315</eissn><abstract>Mitochondria are central hubs for cellular metabolism, coordinating a variety of metabolic reactions crucial for human health. Mitochondria provide most of the cellular energy via their oxidative phosphorylation (OXPHOS) system, which requires the coordinated expression of genes encoded by both the nuclear (nDNA) and mitochondrial genomes (mtDNA). Transcription of mtDNA is not only essential for the biogenesis of the OXPHOS system, but also generates RNA primers necessary to initiate mtDNA replication. Like the prokaryotic system, mitochondria have no membrane-based compartmentalization to separate the different steps of mtDNA maintenance and expression and depend entirely on nDNA-encoded factors imported into the organelle. Our understanding of mitochondrial transcription in mammalian cells has largely progressed, but the mechanisms regulating mtDNA gene expression are still poorly understood despite their profound importance for human disease. Here, we review mechanisms of mitochondrial gene expression with a focus on the recent findings in the field of mammalian mtDNA transcription and disease phenotypes caused by defects in proteins involved in this process.</abstract><cop>Germany</cop><pub>De Gruyter</pub><pmid>35355496</pmid><doi>10.1515/hsz-2021-0416</doi><tpages>027</tpages><orcidid>https://orcid.org/0000-0002-0817-553X</orcidid><orcidid>https://orcid.org/0000-0001-9748-8089</orcidid><orcidid>https://orcid.org/0000-0003-4797-0859</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1431-6730 |
ispartof | Biological chemistry, 2022-07, Vol.403 (8), p.779-805 |
issn | 1431-6730 1437-4315 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03815606v1 |
source | De Gruyter journals |
subjects | Biochemistry, Molecular Biology Gene expression Genomes Genomics inhibitor of mitochondrial transcription Life Sciences Mammalian cells Mammals Metabolism Mitochondria mitochondrial disease Mitochondrial DNA mitochondrial gene expression mitochondrial transcription Oxidative phosphorylation Phenotypes Phosphorylation PPR proteins Transcription |
title | Starting the engine of the powerhouse: mitochondrial transcription and beyond |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T14%3A01%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Starting%20the%20engine%20of%20the%20powerhouse:%20mitochondrial%20transcription%20and%20beyond&rft.jtitle=Biological%20chemistry&rft.au=Miranda,%20Maria&rft.date=2022-07-26&rft.volume=403&rft.issue=8&rft.spage=779&rft.epage=805&rft.pages=779-805&rft.issn=1431-6730&rft.eissn=1437-4315&rft_id=info:doi/10.1515/hsz-2021-0416&rft_dat=%3Cproquest_hal_p%3E2732546890%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2732546890&rft_id=info:pmid/35355496&rfr_iscdi=true |