Microstructure evolution under [110] creep in Ni-base superalloys

[Display omitted] Microstructure evolutions in Ni-base superalloys are investigated during [110] creep loading using 3D and 2D phase field simulations. A recently developed phase field model coupled to a crystal plasticity model based on dislocation densities is employed. The model uses a storage-re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta materialia 2021-06, Vol.212, p.116851, Article 116851
Hauptverfasser: Cottura, M., Appolaire, B., Finel, A., Le Bouar, Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 116851
container_title Acta materialia
container_volume 212
creator Cottura, M.
Appolaire, B.
Finel, A.
Le Bouar, Y.
description [Display omitted] Microstructure evolutions in Ni-base superalloys are investigated during [110] creep loading using 3D and 2D phase field simulations. A recently developed phase field model coupled to a crystal plasticity model based on dislocation densities is employed. The model uses a storage-recovery law for the dislocation density of each glide system and a hardening matrix to account for the short-range interactions between dislocations. We show that small misorientations of the tensile axis strongly modify the evolution: rafting is observed for small deviations, as opposed to a microstructure made of rod-like precipitates when loading is performed along a perfectly aligned [110] direction. Depending on the precise direction of the mechanical load, different evolutions are obtained accompanied by strong modification of the macroscopic creep behavior, explaining the variety of results observed experimentally. The relative role of inhomogeneous and anisotropic elastic and plastic driving forces is also investigated, plasticity being the main driving force for rafting in the considered case. In addition, our calculations show that the initial dislocation density slightly modifies the precipitates morphology but the creep curve is significantly impacted.
doi_str_mv 10.1016/j.actamat.2021.116851
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03815197v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359645421002317</els_id><sourcerecordid>oai_HAL_hal_03815197v2</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-50d9d50187636d743b09fc7ce58c770e130bd55e1773e4027ae25247ced7c32d3</originalsourceid><addsrcrecordid>eNqFkEFLw0AQhRdRsFZ_gpCrh8SZ3Ww2OUkpaoWqFz2JLNvdKW5Jm7KbFPrvTUjx6mmG4b3HvI-xW4QMAYv7TWZsa7amzThwzBCLUuIZm2CpRMpzKc77XcgqLXKZX7KrGDcAyFUOEzZ79TY0sQ2dbbtACR2aumt9s0u6naOQfCHCd2ID0T7xu-TNpysTKYndnoKp6-YYr9nF2tSRbk5zyj6fHj_mi3T5_vwyny1TKypoUwmuchL6nwpROJWLFVRrqyzJ0ioFhAJWTkpCpQTlwJUhLnneC5yygjsxZXdj7o-p9T74rQlH3RivF7OlHm4gSpRYqQPvtXLUDt1ioPWfAUEPzPRGn5jpgZkemfW-h9FHfZGDp6Cj9bTrf_CBbKtd4_9J-AWSF3YO</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Microstructure evolution under [110] creep in Ni-base superalloys</title><source>Elsevier ScienceDirect Journals</source><creator>Cottura, M. ; Appolaire, B. ; Finel, A. ; Le Bouar, Y.</creator><creatorcontrib>Cottura, M. ; Appolaire, B. ; Finel, A. ; Le Bouar, Y.</creatorcontrib><description>[Display omitted] Microstructure evolutions in Ni-base superalloys are investigated during [110] creep loading using 3D and 2D phase field simulations. A recently developed phase field model coupled to a crystal plasticity model based on dislocation densities is employed. The model uses a storage-recovery law for the dislocation density of each glide system and a hardening matrix to account for the short-range interactions between dislocations. We show that small misorientations of the tensile axis strongly modify the evolution: rafting is observed for small deviations, as opposed to a microstructure made of rod-like precipitates when loading is performed along a perfectly aligned [110] direction. Depending on the precise direction of the mechanical load, different evolutions are obtained accompanied by strong modification of the macroscopic creep behavior, explaining the variety of results observed experimentally. The relative role of inhomogeneous and anisotropic elastic and plastic driving forces is also investigated, plasticity being the main driving force for rafting in the considered case. In addition, our calculations show that the initial dislocation density slightly modifies the precipitates morphology but the creep curve is significantly impacted.</description><identifier>ISSN: 1359-6454</identifier><identifier>EISSN: 1873-2453</identifier><identifier>DOI: 10.1016/j.actamat.2021.116851</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Condensed Matter ; crystal plasticity ; Materials Science ; phase field modeling ; phase transformation ; Physics ; superalloys</subject><ispartof>Acta materialia, 2021-06, Vol.212, p.116851, Article 116851</ispartof><rights>2021 Acta Materialia Inc.</rights><rights>Attribution - NonCommercial - NoDerivatives</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-50d9d50187636d743b09fc7ce58c770e130bd55e1773e4027ae25247ced7c32d3</citedby><cites>FETCH-LOGICAL-c390t-50d9d50187636d743b09fc7ce58c770e130bd55e1773e4027ae25247ced7c32d3</cites><orcidid>0000-0002-2528-6565 ; 0000-0001-9937-793X ; 0000-0002-9069-7619</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1359645421002317$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03815197$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Cottura, M.</creatorcontrib><creatorcontrib>Appolaire, B.</creatorcontrib><creatorcontrib>Finel, A.</creatorcontrib><creatorcontrib>Le Bouar, Y.</creatorcontrib><title>Microstructure evolution under [110] creep in Ni-base superalloys</title><title>Acta materialia</title><description>[Display omitted] Microstructure evolutions in Ni-base superalloys are investigated during [110] creep loading using 3D and 2D phase field simulations. A recently developed phase field model coupled to a crystal plasticity model based on dislocation densities is employed. The model uses a storage-recovery law for the dislocation density of each glide system and a hardening matrix to account for the short-range interactions between dislocations. We show that small misorientations of the tensile axis strongly modify the evolution: rafting is observed for small deviations, as opposed to a microstructure made of rod-like precipitates when loading is performed along a perfectly aligned [110] direction. Depending on the precise direction of the mechanical load, different evolutions are obtained accompanied by strong modification of the macroscopic creep behavior, explaining the variety of results observed experimentally. The relative role of inhomogeneous and anisotropic elastic and plastic driving forces is also investigated, plasticity being the main driving force for rafting in the considered case. In addition, our calculations show that the initial dislocation density slightly modifies the precipitates morphology but the creep curve is significantly impacted.</description><subject>Condensed Matter</subject><subject>crystal plasticity</subject><subject>Materials Science</subject><subject>phase field modeling</subject><subject>phase transformation</subject><subject>Physics</subject><subject>superalloys</subject><issn>1359-6454</issn><issn>1873-2453</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkEFLw0AQhRdRsFZ_gpCrh8SZ3Ww2OUkpaoWqFz2JLNvdKW5Jm7KbFPrvTUjx6mmG4b3HvI-xW4QMAYv7TWZsa7amzThwzBCLUuIZm2CpRMpzKc77XcgqLXKZX7KrGDcAyFUOEzZ79TY0sQ2dbbtACR2aumt9s0u6naOQfCHCd2ID0T7xu-TNpysTKYndnoKp6-YYr9nF2tSRbk5zyj6fHj_mi3T5_vwyny1TKypoUwmuchL6nwpROJWLFVRrqyzJ0ioFhAJWTkpCpQTlwJUhLnneC5yygjsxZXdj7o-p9T74rQlH3RivF7OlHm4gSpRYqQPvtXLUDt1ioPWfAUEPzPRGn5jpgZkemfW-h9FHfZGDp6Cj9bTrf_CBbKtd4_9J-AWSF3YO</recordid><startdate>20210615</startdate><enddate>20210615</enddate><creator>Cottura, M.</creator><creator>Appolaire, B.</creator><creator>Finel, A.</creator><creator>Le Bouar, Y.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-2528-6565</orcidid><orcidid>https://orcid.org/0000-0001-9937-793X</orcidid><orcidid>https://orcid.org/0000-0002-9069-7619</orcidid></search><sort><creationdate>20210615</creationdate><title>Microstructure evolution under [110] creep in Ni-base superalloys</title><author>Cottura, M. ; Appolaire, B. ; Finel, A. ; Le Bouar, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-50d9d50187636d743b09fc7ce58c770e130bd55e1773e4027ae25247ced7c32d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Condensed Matter</topic><topic>crystal plasticity</topic><topic>Materials Science</topic><topic>phase field modeling</topic><topic>phase transformation</topic><topic>Physics</topic><topic>superalloys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cottura, M.</creatorcontrib><creatorcontrib>Appolaire, B.</creatorcontrib><creatorcontrib>Finel, A.</creatorcontrib><creatorcontrib>Le Bouar, Y.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Acta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cottura, M.</au><au>Appolaire, B.</au><au>Finel, A.</au><au>Le Bouar, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructure evolution under [110] creep in Ni-base superalloys</atitle><jtitle>Acta materialia</jtitle><date>2021-06-15</date><risdate>2021</risdate><volume>212</volume><spage>116851</spage><pages>116851-</pages><artnum>116851</artnum><issn>1359-6454</issn><eissn>1873-2453</eissn><abstract>[Display omitted] Microstructure evolutions in Ni-base superalloys are investigated during [110] creep loading using 3D and 2D phase field simulations. A recently developed phase field model coupled to a crystal plasticity model based on dislocation densities is employed. The model uses a storage-recovery law for the dislocation density of each glide system and a hardening matrix to account for the short-range interactions between dislocations. We show that small misorientations of the tensile axis strongly modify the evolution: rafting is observed for small deviations, as opposed to a microstructure made of rod-like precipitates when loading is performed along a perfectly aligned [110] direction. Depending on the precise direction of the mechanical load, different evolutions are obtained accompanied by strong modification of the macroscopic creep behavior, explaining the variety of results observed experimentally. The relative role of inhomogeneous and anisotropic elastic and plastic driving forces is also investigated, plasticity being the main driving force for rafting in the considered case. In addition, our calculations show that the initial dislocation density slightly modifies the precipitates morphology but the creep curve is significantly impacted.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.actamat.2021.116851</doi><orcidid>https://orcid.org/0000-0002-2528-6565</orcidid><orcidid>https://orcid.org/0000-0001-9937-793X</orcidid><orcidid>https://orcid.org/0000-0002-9069-7619</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1359-6454
ispartof Acta materialia, 2021-06, Vol.212, p.116851, Article 116851
issn 1359-6454
1873-2453
language eng
recordid cdi_hal_primary_oai_HAL_hal_03815197v2
source Elsevier ScienceDirect Journals
subjects Condensed Matter
crystal plasticity
Materials Science
phase field modeling
phase transformation
Physics
superalloys
title Microstructure evolution under [110] creep in Ni-base superalloys
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T12%3A09%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructure%20evolution%20under%20%5B110%5D%20creep%20in%20Ni-base%20superalloys&rft.jtitle=Acta%20materialia&rft.au=Cottura,%20M.&rft.date=2021-06-15&rft.volume=212&rft.spage=116851&rft.pages=116851-&rft.artnum=116851&rft.issn=1359-6454&rft.eissn=1873-2453&rft_id=info:doi/10.1016/j.actamat.2021.116851&rft_dat=%3Chal_cross%3Eoai_HAL_hal_03815197v2%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S1359645421002317&rfr_iscdi=true