Model description of surface dielectric barrier discharges for flow control

This paper presents a study of the development of a surface dielectric barrier discharge in air under conditions similar to those of plasma actuators for flow control. The study is based on results from a 2D fluid model of the discharge in air that provides the space and time evolution of the charge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. D, Applied physics Applied physics, 2008-05, Vol.41 (9), p.095205-095205 (10)
Hauptverfasser: Lagmich, Y, Callegari, Th, Pitchford, L C, Boeuf, J P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 095205 (10)
container_issue 9
container_start_page 095205
container_title Journal of physics. D, Applied physics
container_volume 41
creator Lagmich, Y
Callegari, Th
Pitchford, L C
Boeuf, J P
description This paper presents a study of the development of a surface dielectric barrier discharge in air under conditions similar to those of plasma actuators for flow control. The study is based on results from a 2D fluid model of the discharge in air that provides the space and time evolution of the charged particle densities, electric field and surface charges. The electrohydrodynamic (EHD) force associated with the momentum transfer from charged particles to neutral molecules in the volume above the dielectric layer is also deduced from the model. Results show that the EHD force is important not only during the positive part of the sinusoidal voltage cycle (i.e. when the electrode on top of the dielectric layer plays the role of the anode) but also during the negative part of the cycle (cathode on top of the dielectric layer). During the positive part of the cycle, the EHD force is due to the formation of a positive ion cloud that is periodically interrupted by high current breakdown. The EHD force during the negative part of the cycle is due to the development of a negative ion cloud that continuously grows during the successive high frequency current pulses that form in this regime.
doi_str_mv 10.1088/0022-3727/41/9/095205
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03805723v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>33017222</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-59620d5ea2b9fc44c56aea580ac8bfadeea618b3cf83f65c3202e27b5ca776553</originalsourceid><addsrcrecordid>eNqNkMFO3DAQhi1UJLZLHwEpFyohNezYjp3kiFBbqi7iQs_WxBmzRmad2lkQb09WQXuhh55GGn3_P5qPsTMOlxyaZgUgRClrUa8qvmpX0CoB6ogtuNS81JWWn9jiwJywzzk_AoDSDV-w37exp1D0lG3yw-jjtoiuyLvk0FLRewpkx-Rt0WFKntK0ynaD6YFy4WIqXIgvhY3bMcVwyo4dhkxf3ueS_fnx_f76plzf_fx1fbUubSX0WKpWC-gVoehaZ6vKKo2EqgG0TeewJ0LNm05a10inlZUCBIm6UxbrWisll-xi7t1gMEPyT5heTURvbq7WZr8D2YCqhXzmE_t1ZocU_-4oj-ZpeoBCwC3FXTZSAq-FEBOoZtCmmHMid2jmYPaazV6h2Ss0FTetmTVPufP3A5gtBpdwa30-hAVI0UoFEwcz5-Pw39XfPkb-iZqhd_INZzyYkQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>33017222</pqid></control><display><type>article</type><title>Model description of surface dielectric barrier discharges for flow control</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Lagmich, Y ; Callegari, Th ; Pitchford, L C ; Boeuf, J P</creator><creatorcontrib>Lagmich, Y ; Callegari, Th ; Pitchford, L C ; Boeuf, J P</creatorcontrib><description>This paper presents a study of the development of a surface dielectric barrier discharge in air under conditions similar to those of plasma actuators for flow control. The study is based on results from a 2D fluid model of the discharge in air that provides the space and time evolution of the charged particle densities, electric field and surface charges. The electrohydrodynamic (EHD) force associated with the momentum transfer from charged particles to neutral molecules in the volume above the dielectric layer is also deduced from the model. Results show that the EHD force is important not only during the positive part of the sinusoidal voltage cycle (i.e. when the electrode on top of the dielectric layer plays the role of the anode) but also during the negative part of the cycle (cathode on top of the dielectric layer). During the positive part of the cycle, the EHD force is due to the formation of a positive ion cloud that is periodically interrupted by high current breakdown. The EHD force during the negative part of the cycle is due to the development of a negative ion cloud that continuously grows during the successive high frequency current pulses that form in this regime.</description><identifier>ISSN: 0022-3727</identifier><identifier>EISSN: 1361-6463</identifier><identifier>DOI: 10.1088/0022-3727/41/9/095205</identifier><identifier>CODEN: JPAPBE</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Electric discharges ; Engineering Sciences ; Exact sciences and technology ; Magnetohydrodynamic and fluid equation ; Other gas discharges ; Physics ; Physics of gases, plasmas and electric discharges ; Physics of plasmas and electric discharges ; Plasma simulation</subject><ispartof>Journal of physics. D, Applied physics, 2008-05, Vol.41 (9), p.095205-095205 (10)</ispartof><rights>2008 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-59620d5ea2b9fc44c56aea580ac8bfadeea618b3cf83f65c3202e27b5ca776553</citedby><cites>FETCH-LOGICAL-c426t-59620d5ea2b9fc44c56aea580ac8bfadeea618b3cf83f65c3202e27b5ca776553</cites><orcidid>0000-0003-1023-222X ; 0000-0003-1636-4194</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0022-3727/41/9/095205/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,780,784,885,27924,27925,53830,53910</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20329350$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03805723$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lagmich, Y</creatorcontrib><creatorcontrib>Callegari, Th</creatorcontrib><creatorcontrib>Pitchford, L C</creatorcontrib><creatorcontrib>Boeuf, J P</creatorcontrib><title>Model description of surface dielectric barrier discharges for flow control</title><title>Journal of physics. D, Applied physics</title><description>This paper presents a study of the development of a surface dielectric barrier discharge in air under conditions similar to those of plasma actuators for flow control. The study is based on results from a 2D fluid model of the discharge in air that provides the space and time evolution of the charged particle densities, electric field and surface charges. The electrohydrodynamic (EHD) force associated with the momentum transfer from charged particles to neutral molecules in the volume above the dielectric layer is also deduced from the model. Results show that the EHD force is important not only during the positive part of the sinusoidal voltage cycle (i.e. when the electrode on top of the dielectric layer plays the role of the anode) but also during the negative part of the cycle (cathode on top of the dielectric layer). During the positive part of the cycle, the EHD force is due to the formation of a positive ion cloud that is periodically interrupted by high current breakdown. The EHD force during the negative part of the cycle is due to the development of a negative ion cloud that continuously grows during the successive high frequency current pulses that form in this regime.</description><subject>Electric discharges</subject><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>Magnetohydrodynamic and fluid equation</subject><subject>Other gas discharges</subject><subject>Physics</subject><subject>Physics of gases, plasmas and electric discharges</subject><subject>Physics of plasmas and electric discharges</subject><subject>Plasma simulation</subject><issn>0022-3727</issn><issn>1361-6463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqNkMFO3DAQhi1UJLZLHwEpFyohNezYjp3kiFBbqi7iQs_WxBmzRmad2lkQb09WQXuhh55GGn3_P5qPsTMOlxyaZgUgRClrUa8qvmpX0CoB6ogtuNS81JWWn9jiwJywzzk_AoDSDV-w37exp1D0lG3yw-jjtoiuyLvk0FLRewpkx-Rt0WFKntK0ynaD6YFy4WIqXIgvhY3bMcVwyo4dhkxf3ueS_fnx_f76plzf_fx1fbUubSX0WKpWC-gVoehaZ6vKKo2EqgG0TeewJ0LNm05a10inlZUCBIm6UxbrWisll-xi7t1gMEPyT5heTURvbq7WZr8D2YCqhXzmE_t1ZocU_-4oj-ZpeoBCwC3FXTZSAq-FEBOoZtCmmHMid2jmYPaazV6h2Ss0FTetmTVPufP3A5gtBpdwa30-hAVI0UoFEwcz5-Pw39XfPkb-iZqhd_INZzyYkQ</recordid><startdate>20080507</startdate><enddate>20080507</enddate><creator>Lagmich, Y</creator><creator>Callegari, Th</creator><creator>Pitchford, L C</creator><creator>Boeuf, J P</creator><general>IOP Publishing</general><general>Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-1023-222X</orcidid><orcidid>https://orcid.org/0000-0003-1636-4194</orcidid></search><sort><creationdate>20080507</creationdate><title>Model description of surface dielectric barrier discharges for flow control</title><author>Lagmich, Y ; Callegari, Th ; Pitchford, L C ; Boeuf, J P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-59620d5ea2b9fc44c56aea580ac8bfadeea618b3cf83f65c3202e27b5ca776553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Electric discharges</topic><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>Magnetohydrodynamic and fluid equation</topic><topic>Other gas discharges</topic><topic>Physics</topic><topic>Physics of gases, plasmas and electric discharges</topic><topic>Physics of plasmas and electric discharges</topic><topic>Plasma simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lagmich, Y</creatorcontrib><creatorcontrib>Callegari, Th</creatorcontrib><creatorcontrib>Pitchford, L C</creatorcontrib><creatorcontrib>Boeuf, J P</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of physics. D, Applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lagmich, Y</au><au>Callegari, Th</au><au>Pitchford, L C</au><au>Boeuf, J P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model description of surface dielectric barrier discharges for flow control</atitle><jtitle>Journal of physics. D, Applied physics</jtitle><date>2008-05-07</date><risdate>2008</risdate><volume>41</volume><issue>9</issue><spage>095205</spage><epage>095205 (10)</epage><pages>095205-095205 (10)</pages><issn>0022-3727</issn><eissn>1361-6463</eissn><coden>JPAPBE</coden><abstract>This paper presents a study of the development of a surface dielectric barrier discharge in air under conditions similar to those of plasma actuators for flow control. The study is based on results from a 2D fluid model of the discharge in air that provides the space and time evolution of the charged particle densities, electric field and surface charges. The electrohydrodynamic (EHD) force associated with the momentum transfer from charged particles to neutral molecules in the volume above the dielectric layer is also deduced from the model. Results show that the EHD force is important not only during the positive part of the sinusoidal voltage cycle (i.e. when the electrode on top of the dielectric layer plays the role of the anode) but also during the negative part of the cycle (cathode on top of the dielectric layer). During the positive part of the cycle, the EHD force is due to the formation of a positive ion cloud that is periodically interrupted by high current breakdown. The EHD force during the negative part of the cycle is due to the development of a negative ion cloud that continuously grows during the successive high frequency current pulses that form in this regime.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/0022-3727/41/9/095205</doi><orcidid>https://orcid.org/0000-0003-1023-222X</orcidid><orcidid>https://orcid.org/0000-0003-1636-4194</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-3727
ispartof Journal of physics. D, Applied physics, 2008-05, Vol.41 (9), p.095205-095205 (10)
issn 0022-3727
1361-6463
language eng
recordid cdi_hal_primary_oai_HAL_hal_03805723v1
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Electric discharges
Engineering Sciences
Exact sciences and technology
Magnetohydrodynamic and fluid equation
Other gas discharges
Physics
Physics of gases, plasmas and electric discharges
Physics of plasmas and electric discharges
Plasma simulation
title Model description of surface dielectric barrier discharges for flow control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T20%3A34%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model%20description%20of%20surface%20dielectric%20barrier%20discharges%20for%20flow%20control&rft.jtitle=Journal%20of%20physics.%20D,%20Applied%20physics&rft.au=Lagmich,%20Y&rft.date=2008-05-07&rft.volume=41&rft.issue=9&rft.spage=095205&rft.epage=095205%20(10)&rft.pages=095205-095205%20(10)&rft.issn=0022-3727&rft.eissn=1361-6463&rft.coden=JPAPBE&rft_id=info:doi/10.1088/0022-3727/41/9/095205&rft_dat=%3Cproquest_hal_p%3E33017222%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=33017222&rft_id=info:pmid/&rfr_iscdi=true