Model description of surface dielectric barrier discharges for flow control
This paper presents a study of the development of a surface dielectric barrier discharge in air under conditions similar to those of plasma actuators for flow control. The study is based on results from a 2D fluid model of the discharge in air that provides the space and time evolution of the charge...
Gespeichert in:
Veröffentlicht in: | Journal of physics. D, Applied physics Applied physics, 2008-05, Vol.41 (9), p.095205-095205 (10) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 095205 (10) |
---|---|
container_issue | 9 |
container_start_page | 095205 |
container_title | Journal of physics. D, Applied physics |
container_volume | 41 |
creator | Lagmich, Y Callegari, Th Pitchford, L C Boeuf, J P |
description | This paper presents a study of the development of a surface dielectric barrier discharge in air under conditions similar to those of plasma actuators for flow control. The study is based on results from a 2D fluid model of the discharge in air that provides the space and time evolution of the charged particle densities, electric field and surface charges. The electrohydrodynamic (EHD) force associated with the momentum transfer from charged particles to neutral molecules in the volume above the dielectric layer is also deduced from the model. Results show that the EHD force is important not only during the positive part of the sinusoidal voltage cycle (i.e. when the electrode on top of the dielectric layer plays the role of the anode) but also during the negative part of the cycle (cathode on top of the dielectric layer). During the positive part of the cycle, the EHD force is due to the formation of a positive ion cloud that is periodically interrupted by high current breakdown. The EHD force during the negative part of the cycle is due to the development of a negative ion cloud that continuously grows during the successive high frequency current pulses that form in this regime. |
doi_str_mv | 10.1088/0022-3727/41/9/095205 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03805723v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>33017222</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-59620d5ea2b9fc44c56aea580ac8bfadeea618b3cf83f65c3202e27b5ca776553</originalsourceid><addsrcrecordid>eNqNkMFO3DAQhi1UJLZLHwEpFyohNezYjp3kiFBbqi7iQs_WxBmzRmad2lkQb09WQXuhh55GGn3_P5qPsTMOlxyaZgUgRClrUa8qvmpX0CoB6ogtuNS81JWWn9jiwJywzzk_AoDSDV-w37exp1D0lG3yw-jjtoiuyLvk0FLRewpkx-Rt0WFKntK0ynaD6YFy4WIqXIgvhY3bMcVwyo4dhkxf3ueS_fnx_f76plzf_fx1fbUubSX0WKpWC-gVoehaZ6vKKo2EqgG0TeewJ0LNm05a10inlZUCBIm6UxbrWisll-xi7t1gMEPyT5heTURvbq7WZr8D2YCqhXzmE_t1ZocU_-4oj-ZpeoBCwC3FXTZSAq-FEBOoZtCmmHMid2jmYPaazV6h2Ss0FTetmTVPufP3A5gtBpdwa30-hAVI0UoFEwcz5-Pw39XfPkb-iZqhd_INZzyYkQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>33017222</pqid></control><display><type>article</type><title>Model description of surface dielectric barrier discharges for flow control</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Lagmich, Y ; Callegari, Th ; Pitchford, L C ; Boeuf, J P</creator><creatorcontrib>Lagmich, Y ; Callegari, Th ; Pitchford, L C ; Boeuf, J P</creatorcontrib><description>This paper presents a study of the development of a surface dielectric barrier discharge in air under conditions similar to those of plasma actuators for flow control. The study is based on results from a 2D fluid model of the discharge in air that provides the space and time evolution of the charged particle densities, electric field and surface charges. The electrohydrodynamic (EHD) force associated with the momentum transfer from charged particles to neutral molecules in the volume above the dielectric layer is also deduced from the model. Results show that the EHD force is important not only during the positive part of the sinusoidal voltage cycle (i.e. when the electrode on top of the dielectric layer plays the role of the anode) but also during the negative part of the cycle (cathode on top of the dielectric layer). During the positive part of the cycle, the EHD force is due to the formation of a positive ion cloud that is periodically interrupted by high current breakdown. The EHD force during the negative part of the cycle is due to the development of a negative ion cloud that continuously grows during the successive high frequency current pulses that form in this regime.</description><identifier>ISSN: 0022-3727</identifier><identifier>EISSN: 1361-6463</identifier><identifier>DOI: 10.1088/0022-3727/41/9/095205</identifier><identifier>CODEN: JPAPBE</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Electric discharges ; Engineering Sciences ; Exact sciences and technology ; Magnetohydrodynamic and fluid equation ; Other gas discharges ; Physics ; Physics of gases, plasmas and electric discharges ; Physics of plasmas and electric discharges ; Plasma simulation</subject><ispartof>Journal of physics. D, Applied physics, 2008-05, Vol.41 (9), p.095205-095205 (10)</ispartof><rights>2008 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-59620d5ea2b9fc44c56aea580ac8bfadeea618b3cf83f65c3202e27b5ca776553</citedby><cites>FETCH-LOGICAL-c426t-59620d5ea2b9fc44c56aea580ac8bfadeea618b3cf83f65c3202e27b5ca776553</cites><orcidid>0000-0003-1023-222X ; 0000-0003-1636-4194</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0022-3727/41/9/095205/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,780,784,885,27924,27925,53830,53910</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20329350$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03805723$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lagmich, Y</creatorcontrib><creatorcontrib>Callegari, Th</creatorcontrib><creatorcontrib>Pitchford, L C</creatorcontrib><creatorcontrib>Boeuf, J P</creatorcontrib><title>Model description of surface dielectric barrier discharges for flow control</title><title>Journal of physics. D, Applied physics</title><description>This paper presents a study of the development of a surface dielectric barrier discharge in air under conditions similar to those of plasma actuators for flow control. The study is based on results from a 2D fluid model of the discharge in air that provides the space and time evolution of the charged particle densities, electric field and surface charges. The electrohydrodynamic (EHD) force associated with the momentum transfer from charged particles to neutral molecules in the volume above the dielectric layer is also deduced from the model. Results show that the EHD force is important not only during the positive part of the sinusoidal voltage cycle (i.e. when the electrode on top of the dielectric layer plays the role of the anode) but also during the negative part of the cycle (cathode on top of the dielectric layer). During the positive part of the cycle, the EHD force is due to the formation of a positive ion cloud that is periodically interrupted by high current breakdown. The EHD force during the negative part of the cycle is due to the development of a negative ion cloud that continuously grows during the successive high frequency current pulses that form in this regime.</description><subject>Electric discharges</subject><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>Magnetohydrodynamic and fluid equation</subject><subject>Other gas discharges</subject><subject>Physics</subject><subject>Physics of gases, plasmas and electric discharges</subject><subject>Physics of plasmas and electric discharges</subject><subject>Plasma simulation</subject><issn>0022-3727</issn><issn>1361-6463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqNkMFO3DAQhi1UJLZLHwEpFyohNezYjp3kiFBbqi7iQs_WxBmzRmad2lkQb09WQXuhh55GGn3_P5qPsTMOlxyaZgUgRClrUa8qvmpX0CoB6ogtuNS81JWWn9jiwJywzzk_AoDSDV-w37exp1D0lG3yw-jjtoiuyLvk0FLRewpkx-Rt0WFKntK0ynaD6YFy4WIqXIgvhY3bMcVwyo4dhkxf3ueS_fnx_f76plzf_fx1fbUubSX0WKpWC-gVoehaZ6vKKo2EqgG0TeewJ0LNm05a10inlZUCBIm6UxbrWisll-xi7t1gMEPyT5heTURvbq7WZr8D2YCqhXzmE_t1ZocU_-4oj-ZpeoBCwC3FXTZSAq-FEBOoZtCmmHMid2jmYPaazV6h2Ss0FTetmTVPufP3A5gtBpdwa30-hAVI0UoFEwcz5-Pw39XfPkb-iZqhd_INZzyYkQ</recordid><startdate>20080507</startdate><enddate>20080507</enddate><creator>Lagmich, Y</creator><creator>Callegari, Th</creator><creator>Pitchford, L C</creator><creator>Boeuf, J P</creator><general>IOP Publishing</general><general>Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-1023-222X</orcidid><orcidid>https://orcid.org/0000-0003-1636-4194</orcidid></search><sort><creationdate>20080507</creationdate><title>Model description of surface dielectric barrier discharges for flow control</title><author>Lagmich, Y ; Callegari, Th ; Pitchford, L C ; Boeuf, J P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-59620d5ea2b9fc44c56aea580ac8bfadeea618b3cf83f65c3202e27b5ca776553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Electric discharges</topic><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>Magnetohydrodynamic and fluid equation</topic><topic>Other gas discharges</topic><topic>Physics</topic><topic>Physics of gases, plasmas and electric discharges</topic><topic>Physics of plasmas and electric discharges</topic><topic>Plasma simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lagmich, Y</creatorcontrib><creatorcontrib>Callegari, Th</creatorcontrib><creatorcontrib>Pitchford, L C</creatorcontrib><creatorcontrib>Boeuf, J P</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of physics. D, Applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lagmich, Y</au><au>Callegari, Th</au><au>Pitchford, L C</au><au>Boeuf, J P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model description of surface dielectric barrier discharges for flow control</atitle><jtitle>Journal of physics. D, Applied physics</jtitle><date>2008-05-07</date><risdate>2008</risdate><volume>41</volume><issue>9</issue><spage>095205</spage><epage>095205 (10)</epage><pages>095205-095205 (10)</pages><issn>0022-3727</issn><eissn>1361-6463</eissn><coden>JPAPBE</coden><abstract>This paper presents a study of the development of a surface dielectric barrier discharge in air under conditions similar to those of plasma actuators for flow control. The study is based on results from a 2D fluid model of the discharge in air that provides the space and time evolution of the charged particle densities, electric field and surface charges. The electrohydrodynamic (EHD) force associated with the momentum transfer from charged particles to neutral molecules in the volume above the dielectric layer is also deduced from the model. Results show that the EHD force is important not only during the positive part of the sinusoidal voltage cycle (i.e. when the electrode on top of the dielectric layer plays the role of the anode) but also during the negative part of the cycle (cathode on top of the dielectric layer). During the positive part of the cycle, the EHD force is due to the formation of a positive ion cloud that is periodically interrupted by high current breakdown. The EHD force during the negative part of the cycle is due to the development of a negative ion cloud that continuously grows during the successive high frequency current pulses that form in this regime.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/0022-3727/41/9/095205</doi><orcidid>https://orcid.org/0000-0003-1023-222X</orcidid><orcidid>https://orcid.org/0000-0003-1636-4194</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3727 |
ispartof | Journal of physics. D, Applied physics, 2008-05, Vol.41 (9), p.095205-095205 (10) |
issn | 0022-3727 1361-6463 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03805723v1 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Electric discharges Engineering Sciences Exact sciences and technology Magnetohydrodynamic and fluid equation Other gas discharges Physics Physics of gases, plasmas and electric discharges Physics of plasmas and electric discharges Plasma simulation |
title | Model description of surface dielectric barrier discharges for flow control |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T20%3A34%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model%20description%20of%20surface%20dielectric%20barrier%20discharges%20for%20flow%20control&rft.jtitle=Journal%20of%20physics.%20D,%20Applied%20physics&rft.au=Lagmich,%20Y&rft.date=2008-05-07&rft.volume=41&rft.issue=9&rft.spage=095205&rft.epage=095205%20(10)&rft.pages=095205-095205%20(10)&rft.issn=0022-3727&rft.eissn=1361-6463&rft.coden=JPAPBE&rft_id=info:doi/10.1088/0022-3727/41/9/095205&rft_dat=%3Cproquest_hal_p%3E33017222%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=33017222&rft_id=info:pmid/&rfr_iscdi=true |