DIAGRAMMATIC CONSTRUCTION OF REPRESENTATIONS OF SMALL QUANTUM $$ \mathfrak{sl} $$2
We provide a combinatorial description of the monoidal category generated by the fundamental representation of the small quantum group of $$ \mathfrak{sl} $$ sl 2 at a root of unity q of odd order. Our approach is diagrammatic, and it relies on an extension of the Temperley–Lieb category specialized...
Gespeichert in:
Veröffentlicht in: | Transformation groups 2022-09, Vol.27 (3), p.751-795 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 795 |
---|---|
container_issue | 3 |
container_start_page | 751 |
container_title | Transformation groups |
container_volume | 27 |
creator | BLANCHET, C. RENZI, M. DE MURAKAMI, J. |
description | We provide a combinatorial description of the monoidal category generated by the fundamental representation of the small quantum group of
$$ \mathfrak{sl} $$
sl
2
at a root of unity
q
of odd order. Our approach is diagrammatic, and it relies on an extension of the Temperley–Lieb category specialized at δ = −
q
−
q
−1
. |
doi_str_mv | 10.1007/s00031-021-09670-z |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03805520v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_03805520v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c236z-eabd946d2b550e303e944b5a599ead16305f5968b5f9b0a2e8c65645ec021e2f3</originalsourceid><addsrcrecordid>eNo9kEtLw0AUhQdRsFb_gKssunERvTOTmWaWQ0zbQB6aB7gQhkk6odWWSkYEI_53EysuLvfyce6BcxC6xnCLAeZ3FgAodoEMI_gc3P4ETTAbEPP50-lwg09dj3Jyji6sfQHAc875BOX3kVzmMklkGQVOkKVFmVdBGWWpky2cPHzIwyJMSzmSYkRFIuPYeaxkWlaJM5s5z3v9vmk7_fpld98DIJforNU7a67-9hRVi7AMVm6cLaNAxm5DKO9do-u18Pia1IyBoUCN8LyaaSaE0WvMKbCWCe7XrBU1aGL8hjPuMdMMKQ1p6RTdHH03eqfeuu1ed5_qoLdqJWM1MqA-MEbgAw9actQ23cHazrT_DxjU2KA6NqgGb_XboOrpD-AiXVo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>DIAGRAMMATIC CONSTRUCTION OF REPRESENTATIONS OF SMALL QUANTUM $$ \mathfrak{sl} $$2</title><source>SpringerLink Journals - AutoHoldings</source><creator>BLANCHET, C. ; RENZI, M. DE ; MURAKAMI, J.</creator><creatorcontrib>BLANCHET, C. ; RENZI, M. DE ; MURAKAMI, J.</creatorcontrib><description>We provide a combinatorial description of the monoidal category generated by the fundamental representation of the small quantum group of
$$ \mathfrak{sl} $$
sl
2
at a root of unity
q
of odd order. Our approach is diagrammatic, and it relies on an extension of the Temperley–Lieb category specialized at δ = −
q
−
q
−1
.</description><identifier>ISSN: 1083-4362</identifier><identifier>EISSN: 1531-586X</identifier><identifier>DOI: 10.1007/s00031-021-09670-z</identifier><language>eng</language><publisher>Springer Verlag</publisher><subject>Mathematics</subject><ispartof>Transformation groups, 2022-09, Vol.27 (3), p.751-795</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c236z-eabd946d2b550e303e944b5a599ead16305f5968b5f9b0a2e8c65645ec021e2f3</citedby><cites>FETCH-LOGICAL-c236z-eabd946d2b550e303e944b5a599ead16305f5968b5f9b0a2e8c65645ec021e2f3</cites><orcidid>0000-0003-2585-649X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03805520$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>BLANCHET, C.</creatorcontrib><creatorcontrib>RENZI, M. DE</creatorcontrib><creatorcontrib>MURAKAMI, J.</creatorcontrib><title>DIAGRAMMATIC CONSTRUCTION OF REPRESENTATIONS OF SMALL QUANTUM $$ \mathfrak{sl} $$2</title><title>Transformation groups</title><description>We provide a combinatorial description of the monoidal category generated by the fundamental representation of the small quantum group of
$$ \mathfrak{sl} $$
sl
2
at a root of unity
q
of odd order. Our approach is diagrammatic, and it relies on an extension of the Temperley–Lieb category specialized at δ = −
q
−
q
−1
.</description><subject>Mathematics</subject><issn>1083-4362</issn><issn>1531-586X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLw0AUhQdRsFb_gKssunERvTOTmWaWQ0zbQB6aB7gQhkk6odWWSkYEI_53EysuLvfyce6BcxC6xnCLAeZ3FgAodoEMI_gc3P4ETTAbEPP50-lwg09dj3Jyji6sfQHAc875BOX3kVzmMklkGQVOkKVFmVdBGWWpky2cPHzIwyJMSzmSYkRFIuPYeaxkWlaJM5s5z3v9vmk7_fpld98DIJforNU7a67-9hRVi7AMVm6cLaNAxm5DKO9do-u18Pia1IyBoUCN8LyaaSaE0WvMKbCWCe7XrBU1aGL8hjPuMdMMKQ1p6RTdHH03eqfeuu1ed5_qoLdqJWM1MqA-MEbgAw9actQ23cHazrT_DxjU2KA6NqgGb_XboOrpD-AiXVo</recordid><startdate>202209</startdate><enddate>202209</enddate><creator>BLANCHET, C.</creator><creator>RENZI, M. DE</creator><creator>MURAKAMI, J.</creator><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-2585-649X</orcidid></search><sort><creationdate>202209</creationdate><title>DIAGRAMMATIC CONSTRUCTION OF REPRESENTATIONS OF SMALL QUANTUM $$ \mathfrak{sl} $$2</title><author>BLANCHET, C. ; RENZI, M. DE ; MURAKAMI, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c236z-eabd946d2b550e303e944b5a599ead16305f5968b5f9b0a2e8c65645ec021e2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BLANCHET, C.</creatorcontrib><creatorcontrib>RENZI, M. DE</creatorcontrib><creatorcontrib>MURAKAMI, J.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Transformation groups</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BLANCHET, C.</au><au>RENZI, M. DE</au><au>MURAKAMI, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DIAGRAMMATIC CONSTRUCTION OF REPRESENTATIONS OF SMALL QUANTUM $$ \mathfrak{sl} $$2</atitle><jtitle>Transformation groups</jtitle><date>2022-09</date><risdate>2022</risdate><volume>27</volume><issue>3</issue><spage>751</spage><epage>795</epage><pages>751-795</pages><issn>1083-4362</issn><eissn>1531-586X</eissn><abstract>We provide a combinatorial description of the monoidal category generated by the fundamental representation of the small quantum group of
$$ \mathfrak{sl} $$
sl
2
at a root of unity
q
of odd order. Our approach is diagrammatic, and it relies on an extension of the Temperley–Lieb category specialized at δ = −
q
−
q
−1
.</abstract><pub>Springer Verlag</pub><doi>10.1007/s00031-021-09670-z</doi><tpages>45</tpages><orcidid>https://orcid.org/0000-0003-2585-649X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1083-4362 |
ispartof | Transformation groups, 2022-09, Vol.27 (3), p.751-795 |
issn | 1083-4362 1531-586X |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03805520v1 |
source | SpringerLink Journals - AutoHoldings |
subjects | Mathematics |
title | DIAGRAMMATIC CONSTRUCTION OF REPRESENTATIONS OF SMALL QUANTUM $$ \mathfrak{sl} $$2 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T06%3A06%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DIAGRAMMATIC%20CONSTRUCTION%20OF%20REPRESENTATIONS%20OF%20SMALL%20QUANTUM%20$$%20%5Cmathfrak%7Bsl%7D%20$$2&rft.jtitle=Transformation%20groups&rft.au=BLANCHET,%20C.&rft.date=2022-09&rft.volume=27&rft.issue=3&rft.spage=751&rft.epage=795&rft.pages=751-795&rft.issn=1083-4362&rft.eissn=1531-586X&rft_id=info:doi/10.1007/s00031-021-09670-z&rft_dat=%3Chal_cross%3Eoai_HAL_hal_03805520v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |