Directional Thermal Diffusion Realizing Inorganic Sb2Te3/Te Hybrid Thin Films with High Thermoelectric Performance and Flexibility
Inorganic films possess much higher thermoelectric performance than their organic counterparts, but their poor flexibilities limit their practical applications. Here, Sb2Te3/Tex hybrid thin films with high thermoelectric performance and flexibility, fabricated via a novel directional thermal diffusi...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2022-11, Vol.32 (45), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 45 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 32 |
creator | Wei, Meng Shi, Xiao‐Lei Zheng, Zhuang‐Hao Li, Fu Liu, Wei‐Di Xiang, Li‐Ping Xie, Yang‐Su Chen, Yue‐Xing Duan, Jing‐Yi Ma, Hong‐Li Liang, Guang‐Xing Zhang, Xiang‐Hua Fan, Ping Chen, Zhi‐Gang |
description | Inorganic films possess much higher thermoelectric performance than their organic counterparts, but their poor flexibilities limit their practical applications. Here, Sb2Te3/Tex hybrid thin films with high thermoelectric performance and flexibility, fabricated via a novel directional thermal diffusion reaction growth method are reported. The directional thermal diffusion enables rationally tuning the Te content in Sb2Te3, which optimizes the carrier density and leads to a significantly enhanced power factor of >20 µW cm–1 K–2, confirmed by both first‐principles calculations and experiments; while dense boundaries between Te and Sb2Te3 nanophases, contribute to the low thermal conductivity of ≈0.86 W m–1 K–1, both induce a high ZT of ≈1 in (Sb2Te3)(Te)1.5 at 453 K, ranking as the top value among the reported flexible films. Besides, thin films also exhibit extraordinary flexibility. A rationally designed flexible device composed of (Sb2Te3)(Te)1.5 thin films as p‐type legs and Bi2Te3 thin films as n‐type legs shows a high power density of >280 µW cm–2 at a temperature difference of 20 K, indicating a great potential for sustainably charging low‐power electronics.
A high ZT of ≈1 at 453 K is achieved in an inorganic Sb2Te3/Te hybrid thin film via a novel directional thermal diffusion reaction growth method with extraordinary flexibility, and the rationally designed flexible device shows a high power density by a low‐temperature difference. |
doi_str_mv | 10.1002/adfm.202207903 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03797271v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2731323437</sourcerecordid><originalsourceid>FETCH-LOGICAL-h3073-a323617ac366a945c2519b0031a790c2a668a2d2124b946b4249a97bae9302233</originalsourceid><addsrcrecordid>eNo9kU1PwkAQhhujiYhePW_iyUNhP0qXPRIQIcFoFBNvm2nZ0iHbFrcg4tFf7pKanuYj7zyZmTcIbhntMUp5H1ZZ0eOUcyoVFWdBh8UsDgXlw_M2Zx-XwVVdbyhlUoqoE_xO0Jl0h1UJlixz4wofJ5hl-9r3yKsBiz9Yrsm8rNwaSkzJW8KXRvSXhsyOicOVH8OSTNEWNTngLiczXOcNqzLWw50fejEuqzy8TA2BckWm1nxjghZ3x-vgIgNbm5v_2A3epw_L8SxcPD_Ox6NFmAsqRQiCi5hJSEUcg4oGKR8wlVAqGPh7Uw5xPAS-4oxHiYriJOKRAiUTMMr_gAvRDe4bbg5Wbx0W4I66AtSz0UKfelRIJblkX8xr7xrt1lWfe1Pv9KbaO_-jWnMpmF8lEtKrVKM6oDXHlsmoPhmiT4bo1hA9mkyf2kr8AXNTgBg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2731323437</pqid></control><display><type>article</type><title>Directional Thermal Diffusion Realizing Inorganic Sb2Te3/Te Hybrid Thin Films with High Thermoelectric Performance and Flexibility</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wei, Meng ; Shi, Xiao‐Lei ; Zheng, Zhuang‐Hao ; Li, Fu ; Liu, Wei‐Di ; Xiang, Li‐Ping ; Xie, Yang‐Su ; Chen, Yue‐Xing ; Duan, Jing‐Yi ; Ma, Hong‐Li ; Liang, Guang‐Xing ; Zhang, Xiang‐Hua ; Fan, Ping ; Chen, Zhi‐Gang</creator><creatorcontrib>Wei, Meng ; Shi, Xiao‐Lei ; Zheng, Zhuang‐Hao ; Li, Fu ; Liu, Wei‐Di ; Xiang, Li‐Ping ; Xie, Yang‐Su ; Chen, Yue‐Xing ; Duan, Jing‐Yi ; Ma, Hong‐Li ; Liang, Guang‐Xing ; Zhang, Xiang‐Hua ; Fan, Ping ; Chen, Zhi‐Gang</creatorcontrib><description>Inorganic films possess much higher thermoelectric performance than their organic counterparts, but their poor flexibilities limit their practical applications. Here, Sb2Te3/Tex hybrid thin films with high thermoelectric performance and flexibility, fabricated via a novel directional thermal diffusion reaction growth method are reported. The directional thermal diffusion enables rationally tuning the Te content in Sb2Te3, which optimizes the carrier density and leads to a significantly enhanced power factor of >20 µW cm–1 K–2, confirmed by both first‐principles calculations and experiments; while dense boundaries between Te and Sb2Te3 nanophases, contribute to the low thermal conductivity of ≈0.86 W m–1 K–1, both induce a high ZT of ≈1 in (Sb2Te3)(Te)1.5 at 453 K, ranking as the top value among the reported flexible films. Besides, thin films also exhibit extraordinary flexibility. A rationally designed flexible device composed of (Sb2Te3)(Te)1.5 thin films as p‐type legs and Bi2Te3 thin films as n‐type legs shows a high power density of >280 µW cm–2 at a temperature difference of 20 K, indicating a great potential for sustainably charging low‐power electronics.
A high ZT of ≈1 at 453 K is achieved in an inorganic Sb2Te3/Te hybrid thin film via a novel directional thermal diffusion reaction growth method with extraordinary flexibility, and the rationally designed flexible device shows a high power density by a low‐temperature difference.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202207903</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Antimony telluride ; Carrier density ; Chemical Sciences ; devices ; Flexibility ; flexible ; Materials science ; Power factor ; Sb 2Te 3 ; Tellurium ; Temperature gradients ; Thermal conductivity ; Thermal diffusion ; Thermoelectricity ; thermoelectrics ; Thin films</subject><ispartof>Advanced functional materials, 2022-11, Vol.32 (45), p.n/a</ispartof><rights>2022 The Authors. Advanced Functional Materials published by Wiley‐VCH GmbH</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution - NonCommercial - NoDerivatives</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-9309-7993 ; 0000-0002-2475-9826 ; 0000-0003-1104-2583 ; 0000-0003-2051-6576 ; 0000-0003-3034-5862 ; 0000-0003-0905-2547 ; 0000-0002-2180-6543 ; 0000-0001-7617-4881</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202207903$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202207903$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03797271$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Wei, Meng</creatorcontrib><creatorcontrib>Shi, Xiao‐Lei</creatorcontrib><creatorcontrib>Zheng, Zhuang‐Hao</creatorcontrib><creatorcontrib>Li, Fu</creatorcontrib><creatorcontrib>Liu, Wei‐Di</creatorcontrib><creatorcontrib>Xiang, Li‐Ping</creatorcontrib><creatorcontrib>Xie, Yang‐Su</creatorcontrib><creatorcontrib>Chen, Yue‐Xing</creatorcontrib><creatorcontrib>Duan, Jing‐Yi</creatorcontrib><creatorcontrib>Ma, Hong‐Li</creatorcontrib><creatorcontrib>Liang, Guang‐Xing</creatorcontrib><creatorcontrib>Zhang, Xiang‐Hua</creatorcontrib><creatorcontrib>Fan, Ping</creatorcontrib><creatorcontrib>Chen, Zhi‐Gang</creatorcontrib><title>Directional Thermal Diffusion Realizing Inorganic Sb2Te3/Te Hybrid Thin Films with High Thermoelectric Performance and Flexibility</title><title>Advanced functional materials</title><description>Inorganic films possess much higher thermoelectric performance than their organic counterparts, but their poor flexibilities limit their practical applications. Here, Sb2Te3/Tex hybrid thin films with high thermoelectric performance and flexibility, fabricated via a novel directional thermal diffusion reaction growth method are reported. The directional thermal diffusion enables rationally tuning the Te content in Sb2Te3, which optimizes the carrier density and leads to a significantly enhanced power factor of >20 µW cm–1 K–2, confirmed by both first‐principles calculations and experiments; while dense boundaries between Te and Sb2Te3 nanophases, contribute to the low thermal conductivity of ≈0.86 W m–1 K–1, both induce a high ZT of ≈1 in (Sb2Te3)(Te)1.5 at 453 K, ranking as the top value among the reported flexible films. Besides, thin films also exhibit extraordinary flexibility. A rationally designed flexible device composed of (Sb2Te3)(Te)1.5 thin films as p‐type legs and Bi2Te3 thin films as n‐type legs shows a high power density of >280 µW cm–2 at a temperature difference of 20 K, indicating a great potential for sustainably charging low‐power electronics.
A high ZT of ≈1 at 453 K is achieved in an inorganic Sb2Te3/Te hybrid thin film via a novel directional thermal diffusion reaction growth method with extraordinary flexibility, and the rationally designed flexible device shows a high power density by a low‐temperature difference.</description><subject>Antimony telluride</subject><subject>Carrier density</subject><subject>Chemical Sciences</subject><subject>devices</subject><subject>Flexibility</subject><subject>flexible</subject><subject>Materials science</subject><subject>Power factor</subject><subject>Sb 2Te 3</subject><subject>Tellurium</subject><subject>Temperature gradients</subject><subject>Thermal conductivity</subject><subject>Thermal diffusion</subject><subject>Thermoelectricity</subject><subject>thermoelectrics</subject><subject>Thin films</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNo9kU1PwkAQhhujiYhePW_iyUNhP0qXPRIQIcFoFBNvm2nZ0iHbFrcg4tFf7pKanuYj7zyZmTcIbhntMUp5H1ZZ0eOUcyoVFWdBh8UsDgXlw_M2Zx-XwVVdbyhlUoqoE_xO0Jl0h1UJlixz4wofJ5hl-9r3yKsBiz9Yrsm8rNwaSkzJW8KXRvSXhsyOicOVH8OSTNEWNTngLiczXOcNqzLWw50fejEuqzy8TA2BckWm1nxjghZ3x-vgIgNbm5v_2A3epw_L8SxcPD_Ox6NFmAsqRQiCi5hJSEUcg4oGKR8wlVAqGPh7Uw5xPAS-4oxHiYriJOKRAiUTMMr_gAvRDe4bbg5Wbx0W4I66AtSz0UKfelRIJblkX8xr7xrt1lWfe1Pv9KbaO_-jWnMpmF8lEtKrVKM6oDXHlsmoPhmiT4bo1hA9mkyf2kr8AXNTgBg</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Wei, Meng</creator><creator>Shi, Xiao‐Lei</creator><creator>Zheng, Zhuang‐Hao</creator><creator>Li, Fu</creator><creator>Liu, Wei‐Di</creator><creator>Xiang, Li‐Ping</creator><creator>Xie, Yang‐Su</creator><creator>Chen, Yue‐Xing</creator><creator>Duan, Jing‐Yi</creator><creator>Ma, Hong‐Li</creator><creator>Liang, Guang‐Xing</creator><creator>Zhang, Xiang‐Hua</creator><creator>Fan, Ping</creator><creator>Chen, Zhi‐Gang</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>24P</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-9309-7993</orcidid><orcidid>https://orcid.org/0000-0002-2475-9826</orcidid><orcidid>https://orcid.org/0000-0003-1104-2583</orcidid><orcidid>https://orcid.org/0000-0003-2051-6576</orcidid><orcidid>https://orcid.org/0000-0003-3034-5862</orcidid><orcidid>https://orcid.org/0000-0003-0905-2547</orcidid><orcidid>https://orcid.org/0000-0002-2180-6543</orcidid><orcidid>https://orcid.org/0000-0001-7617-4881</orcidid></search><sort><creationdate>20221101</creationdate><title>Directional Thermal Diffusion Realizing Inorganic Sb2Te3/Te Hybrid Thin Films with High Thermoelectric Performance and Flexibility</title><author>Wei, Meng ; Shi, Xiao‐Lei ; Zheng, Zhuang‐Hao ; Li, Fu ; Liu, Wei‐Di ; Xiang, Li‐Ping ; Xie, Yang‐Su ; Chen, Yue‐Xing ; Duan, Jing‐Yi ; Ma, Hong‐Li ; Liang, Guang‐Xing ; Zhang, Xiang‐Hua ; Fan, Ping ; Chen, Zhi‐Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h3073-a323617ac366a945c2519b0031a790c2a668a2d2124b946b4249a97bae9302233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Antimony telluride</topic><topic>Carrier density</topic><topic>Chemical Sciences</topic><topic>devices</topic><topic>Flexibility</topic><topic>flexible</topic><topic>Materials science</topic><topic>Power factor</topic><topic>Sb 2Te 3</topic><topic>Tellurium</topic><topic>Temperature gradients</topic><topic>Thermal conductivity</topic><topic>Thermal diffusion</topic><topic>Thermoelectricity</topic><topic>thermoelectrics</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Meng</creatorcontrib><creatorcontrib>Shi, Xiao‐Lei</creatorcontrib><creatorcontrib>Zheng, Zhuang‐Hao</creatorcontrib><creatorcontrib>Li, Fu</creatorcontrib><creatorcontrib>Liu, Wei‐Di</creatorcontrib><creatorcontrib>Xiang, Li‐Ping</creatorcontrib><creatorcontrib>Xie, Yang‐Su</creatorcontrib><creatorcontrib>Chen, Yue‐Xing</creatorcontrib><creatorcontrib>Duan, Jing‐Yi</creatorcontrib><creatorcontrib>Ma, Hong‐Li</creatorcontrib><creatorcontrib>Liang, Guang‐Xing</creatorcontrib><creatorcontrib>Zhang, Xiang‐Hua</creatorcontrib><creatorcontrib>Fan, Ping</creatorcontrib><creatorcontrib>Chen, Zhi‐Gang</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Meng</au><au>Shi, Xiao‐Lei</au><au>Zheng, Zhuang‐Hao</au><au>Li, Fu</au><au>Liu, Wei‐Di</au><au>Xiang, Li‐Ping</au><au>Xie, Yang‐Su</au><au>Chen, Yue‐Xing</au><au>Duan, Jing‐Yi</au><au>Ma, Hong‐Li</au><au>Liang, Guang‐Xing</au><au>Zhang, Xiang‐Hua</au><au>Fan, Ping</au><au>Chen, Zhi‐Gang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Directional Thermal Diffusion Realizing Inorganic Sb2Te3/Te Hybrid Thin Films with High Thermoelectric Performance and Flexibility</atitle><jtitle>Advanced functional materials</jtitle><date>2022-11-01</date><risdate>2022</risdate><volume>32</volume><issue>45</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Inorganic films possess much higher thermoelectric performance than their organic counterparts, but their poor flexibilities limit their practical applications. Here, Sb2Te3/Tex hybrid thin films with high thermoelectric performance and flexibility, fabricated via a novel directional thermal diffusion reaction growth method are reported. The directional thermal diffusion enables rationally tuning the Te content in Sb2Te3, which optimizes the carrier density and leads to a significantly enhanced power factor of >20 µW cm–1 K–2, confirmed by both first‐principles calculations and experiments; while dense boundaries between Te and Sb2Te3 nanophases, contribute to the low thermal conductivity of ≈0.86 W m–1 K–1, both induce a high ZT of ≈1 in (Sb2Te3)(Te)1.5 at 453 K, ranking as the top value among the reported flexible films. Besides, thin films also exhibit extraordinary flexibility. A rationally designed flexible device composed of (Sb2Te3)(Te)1.5 thin films as p‐type legs and Bi2Te3 thin films as n‐type legs shows a high power density of >280 µW cm–2 at a temperature difference of 20 K, indicating a great potential for sustainably charging low‐power electronics.
A high ZT of ≈1 at 453 K is achieved in an inorganic Sb2Te3/Te hybrid thin film via a novel directional thermal diffusion reaction growth method with extraordinary flexibility, and the rationally designed flexible device shows a high power density by a low‐temperature difference.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202207903</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9309-7993</orcidid><orcidid>https://orcid.org/0000-0002-2475-9826</orcidid><orcidid>https://orcid.org/0000-0003-1104-2583</orcidid><orcidid>https://orcid.org/0000-0003-2051-6576</orcidid><orcidid>https://orcid.org/0000-0003-3034-5862</orcidid><orcidid>https://orcid.org/0000-0003-0905-2547</orcidid><orcidid>https://orcid.org/0000-0002-2180-6543</orcidid><orcidid>https://orcid.org/0000-0001-7617-4881</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2022-11, Vol.32 (45), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03797271v1 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Antimony telluride Carrier density Chemical Sciences devices Flexibility flexible Materials science Power factor Sb 2Te 3 Tellurium Temperature gradients Thermal conductivity Thermal diffusion Thermoelectricity thermoelectrics Thin films |
title | Directional Thermal Diffusion Realizing Inorganic Sb2Te3/Te Hybrid Thin Films with High Thermoelectric Performance and Flexibility |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T10%3A02%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Directional%20Thermal%20Diffusion%20Realizing%20Inorganic%20Sb2Te3/Te%20Hybrid%20Thin%20Films%20with%20High%20Thermoelectric%20Performance%20and%20Flexibility&rft.jtitle=Advanced%20functional%20materials&rft.au=Wei,%20Meng&rft.date=2022-11-01&rft.volume=32&rft.issue=45&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202207903&rft_dat=%3Cproquest_hal_p%3E2731323437%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2731323437&rft_id=info:pmid/&rfr_iscdi=true |