Directional Thermal Diffusion Realizing Inorganic Sb2Te3/Te Hybrid Thin Films with High Thermoelectric Performance and Flexibility

Inorganic films possess much higher thermoelectric performance than their organic counterparts, but their poor flexibilities limit their practical applications. Here, Sb2Te3/Tex hybrid thin films with high thermoelectric performance and flexibility, fabricated via a novel directional thermal diffusi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2022-11, Vol.32 (45), p.n/a
Hauptverfasser: Wei, Meng, Shi, Xiao‐Lei, Zheng, Zhuang‐Hao, Li, Fu, Liu, Wei‐Di, Xiang, Li‐Ping, Xie, Yang‐Su, Chen, Yue‐Xing, Duan, Jing‐Yi, Ma, Hong‐Li, Liang, Guang‐Xing, Zhang, Xiang‐Hua, Fan, Ping, Chen, Zhi‐Gang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 45
container_start_page
container_title Advanced functional materials
container_volume 32
creator Wei, Meng
Shi, Xiao‐Lei
Zheng, Zhuang‐Hao
Li, Fu
Liu, Wei‐Di
Xiang, Li‐Ping
Xie, Yang‐Su
Chen, Yue‐Xing
Duan, Jing‐Yi
Ma, Hong‐Li
Liang, Guang‐Xing
Zhang, Xiang‐Hua
Fan, Ping
Chen, Zhi‐Gang
description Inorganic films possess much higher thermoelectric performance than their organic counterparts, but their poor flexibilities limit their practical applications. Here, Sb2Te3/Tex hybrid thin films with high thermoelectric performance and flexibility, fabricated via a novel directional thermal diffusion reaction growth method are reported. The directional thermal diffusion enables rationally tuning the Te content in Sb2Te3, which optimizes the carrier density and leads to a significantly enhanced power factor of >20 µW cm–1 K–2, confirmed by both first‐principles calculations and experiments; while dense boundaries between Te and Sb2Te3 nanophases, contribute to the low thermal conductivity of ≈0.86 W m–1 K–1, both induce a high ZT of ≈1 in (Sb2Te3)(Te)1.5 at 453 K, ranking as the top value among the reported flexible films. Besides, thin films also exhibit extraordinary flexibility. A rationally designed flexible device composed of (Sb2Te3)(Te)1.5 thin films as p‐type legs and Bi2Te3 thin films as n‐type legs shows a high power density of >280 µW cm–2 at a temperature difference of 20 K, indicating a great potential for sustainably charging low‐power electronics. A high ZT of ≈1 at 453 K is achieved in an inorganic Sb2Te3/Te hybrid thin film via a novel directional thermal diffusion reaction growth method with extraordinary flexibility, and the rationally designed flexible device shows a high power density by a low‐temperature difference.
doi_str_mv 10.1002/adfm.202207903
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03797271v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2731323437</sourcerecordid><originalsourceid>FETCH-LOGICAL-h3073-a323617ac366a945c2519b0031a790c2a668a2d2124b946b4249a97bae9302233</originalsourceid><addsrcrecordid>eNo9kU1PwkAQhhujiYhePW_iyUNhP0qXPRIQIcFoFBNvm2nZ0iHbFrcg4tFf7pKanuYj7zyZmTcIbhntMUp5H1ZZ0eOUcyoVFWdBh8UsDgXlw_M2Zx-XwVVdbyhlUoqoE_xO0Jl0h1UJlixz4wofJ5hl-9r3yKsBiz9Yrsm8rNwaSkzJW8KXRvSXhsyOicOVH8OSTNEWNTngLiczXOcNqzLWw50fejEuqzy8TA2BckWm1nxjghZ3x-vgIgNbm5v_2A3epw_L8SxcPD_Ox6NFmAsqRQiCi5hJSEUcg4oGKR8wlVAqGPh7Uw5xPAS-4oxHiYriJOKRAiUTMMr_gAvRDe4bbg5Wbx0W4I66AtSz0UKfelRIJblkX8xr7xrt1lWfe1Pv9KbaO_-jWnMpmF8lEtKrVKM6oDXHlsmoPhmiT4bo1hA9mkyf2kr8AXNTgBg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2731323437</pqid></control><display><type>article</type><title>Directional Thermal Diffusion Realizing Inorganic Sb2Te3/Te Hybrid Thin Films with High Thermoelectric Performance and Flexibility</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wei, Meng ; Shi, Xiao‐Lei ; Zheng, Zhuang‐Hao ; Li, Fu ; Liu, Wei‐Di ; Xiang, Li‐Ping ; Xie, Yang‐Su ; Chen, Yue‐Xing ; Duan, Jing‐Yi ; Ma, Hong‐Li ; Liang, Guang‐Xing ; Zhang, Xiang‐Hua ; Fan, Ping ; Chen, Zhi‐Gang</creator><creatorcontrib>Wei, Meng ; Shi, Xiao‐Lei ; Zheng, Zhuang‐Hao ; Li, Fu ; Liu, Wei‐Di ; Xiang, Li‐Ping ; Xie, Yang‐Su ; Chen, Yue‐Xing ; Duan, Jing‐Yi ; Ma, Hong‐Li ; Liang, Guang‐Xing ; Zhang, Xiang‐Hua ; Fan, Ping ; Chen, Zhi‐Gang</creatorcontrib><description>Inorganic films possess much higher thermoelectric performance than their organic counterparts, but their poor flexibilities limit their practical applications. Here, Sb2Te3/Tex hybrid thin films with high thermoelectric performance and flexibility, fabricated via a novel directional thermal diffusion reaction growth method are reported. The directional thermal diffusion enables rationally tuning the Te content in Sb2Te3, which optimizes the carrier density and leads to a significantly enhanced power factor of &gt;20 µW cm–1 K–2, confirmed by both first‐principles calculations and experiments; while dense boundaries between Te and Sb2Te3 nanophases, contribute to the low thermal conductivity of ≈0.86 W m–1 K–1, both induce a high ZT of ≈1 in (Sb2Te3)(Te)1.5 at 453 K, ranking as the top value among the reported flexible films. Besides, thin films also exhibit extraordinary flexibility. A rationally designed flexible device composed of (Sb2Te3)(Te)1.5 thin films as p‐type legs and Bi2Te3 thin films as n‐type legs shows a high power density of &gt;280 µW cm–2 at a temperature difference of 20 K, indicating a great potential for sustainably charging low‐power electronics. A high ZT of ≈1 at 453 K is achieved in an inorganic Sb2Te3/Te hybrid thin film via a novel directional thermal diffusion reaction growth method with extraordinary flexibility, and the rationally designed flexible device shows a high power density by a low‐temperature difference.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202207903</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Antimony telluride ; Carrier density ; Chemical Sciences ; devices ; Flexibility ; flexible ; Materials science ; Power factor ; Sb 2Te 3 ; Tellurium ; Temperature gradients ; Thermal conductivity ; Thermal diffusion ; Thermoelectricity ; thermoelectrics ; Thin films</subject><ispartof>Advanced functional materials, 2022-11, Vol.32 (45), p.n/a</ispartof><rights>2022 The Authors. Advanced Functional Materials published by Wiley‐VCH GmbH</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution - NonCommercial - NoDerivatives</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-9309-7993 ; 0000-0002-2475-9826 ; 0000-0003-1104-2583 ; 0000-0003-2051-6576 ; 0000-0003-3034-5862 ; 0000-0003-0905-2547 ; 0000-0002-2180-6543 ; 0000-0001-7617-4881</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202207903$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202207903$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03797271$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Wei, Meng</creatorcontrib><creatorcontrib>Shi, Xiao‐Lei</creatorcontrib><creatorcontrib>Zheng, Zhuang‐Hao</creatorcontrib><creatorcontrib>Li, Fu</creatorcontrib><creatorcontrib>Liu, Wei‐Di</creatorcontrib><creatorcontrib>Xiang, Li‐Ping</creatorcontrib><creatorcontrib>Xie, Yang‐Su</creatorcontrib><creatorcontrib>Chen, Yue‐Xing</creatorcontrib><creatorcontrib>Duan, Jing‐Yi</creatorcontrib><creatorcontrib>Ma, Hong‐Li</creatorcontrib><creatorcontrib>Liang, Guang‐Xing</creatorcontrib><creatorcontrib>Zhang, Xiang‐Hua</creatorcontrib><creatorcontrib>Fan, Ping</creatorcontrib><creatorcontrib>Chen, Zhi‐Gang</creatorcontrib><title>Directional Thermal Diffusion Realizing Inorganic Sb2Te3/Te Hybrid Thin Films with High Thermoelectric Performance and Flexibility</title><title>Advanced functional materials</title><description>Inorganic films possess much higher thermoelectric performance than their organic counterparts, but their poor flexibilities limit their practical applications. Here, Sb2Te3/Tex hybrid thin films with high thermoelectric performance and flexibility, fabricated via a novel directional thermal diffusion reaction growth method are reported. The directional thermal diffusion enables rationally tuning the Te content in Sb2Te3, which optimizes the carrier density and leads to a significantly enhanced power factor of &gt;20 µW cm–1 K–2, confirmed by both first‐principles calculations and experiments; while dense boundaries between Te and Sb2Te3 nanophases, contribute to the low thermal conductivity of ≈0.86 W m–1 K–1, both induce a high ZT of ≈1 in (Sb2Te3)(Te)1.5 at 453 K, ranking as the top value among the reported flexible films. Besides, thin films also exhibit extraordinary flexibility. A rationally designed flexible device composed of (Sb2Te3)(Te)1.5 thin films as p‐type legs and Bi2Te3 thin films as n‐type legs shows a high power density of &gt;280 µW cm–2 at a temperature difference of 20 K, indicating a great potential for sustainably charging low‐power electronics. A high ZT of ≈1 at 453 K is achieved in an inorganic Sb2Te3/Te hybrid thin film via a novel directional thermal diffusion reaction growth method with extraordinary flexibility, and the rationally designed flexible device shows a high power density by a low‐temperature difference.</description><subject>Antimony telluride</subject><subject>Carrier density</subject><subject>Chemical Sciences</subject><subject>devices</subject><subject>Flexibility</subject><subject>flexible</subject><subject>Materials science</subject><subject>Power factor</subject><subject>Sb 2Te 3</subject><subject>Tellurium</subject><subject>Temperature gradients</subject><subject>Thermal conductivity</subject><subject>Thermal diffusion</subject><subject>Thermoelectricity</subject><subject>thermoelectrics</subject><subject>Thin films</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNo9kU1PwkAQhhujiYhePW_iyUNhP0qXPRIQIcFoFBNvm2nZ0iHbFrcg4tFf7pKanuYj7zyZmTcIbhntMUp5H1ZZ0eOUcyoVFWdBh8UsDgXlw_M2Zx-XwVVdbyhlUoqoE_xO0Jl0h1UJlixz4wofJ5hl-9r3yKsBiz9Yrsm8rNwaSkzJW8KXRvSXhsyOicOVH8OSTNEWNTngLiczXOcNqzLWw50fejEuqzy8TA2BckWm1nxjghZ3x-vgIgNbm5v_2A3epw_L8SxcPD_Ox6NFmAsqRQiCi5hJSEUcg4oGKR8wlVAqGPh7Uw5xPAS-4oxHiYriJOKRAiUTMMr_gAvRDe4bbg5Wbx0W4I66AtSz0UKfelRIJblkX8xr7xrt1lWfe1Pv9KbaO_-jWnMpmF8lEtKrVKM6oDXHlsmoPhmiT4bo1hA9mkyf2kr8AXNTgBg</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Wei, Meng</creator><creator>Shi, Xiao‐Lei</creator><creator>Zheng, Zhuang‐Hao</creator><creator>Li, Fu</creator><creator>Liu, Wei‐Di</creator><creator>Xiang, Li‐Ping</creator><creator>Xie, Yang‐Su</creator><creator>Chen, Yue‐Xing</creator><creator>Duan, Jing‐Yi</creator><creator>Ma, Hong‐Li</creator><creator>Liang, Guang‐Xing</creator><creator>Zhang, Xiang‐Hua</creator><creator>Fan, Ping</creator><creator>Chen, Zhi‐Gang</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>24P</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-9309-7993</orcidid><orcidid>https://orcid.org/0000-0002-2475-9826</orcidid><orcidid>https://orcid.org/0000-0003-1104-2583</orcidid><orcidid>https://orcid.org/0000-0003-2051-6576</orcidid><orcidid>https://orcid.org/0000-0003-3034-5862</orcidid><orcidid>https://orcid.org/0000-0003-0905-2547</orcidid><orcidid>https://orcid.org/0000-0002-2180-6543</orcidid><orcidid>https://orcid.org/0000-0001-7617-4881</orcidid></search><sort><creationdate>20221101</creationdate><title>Directional Thermal Diffusion Realizing Inorganic Sb2Te3/Te Hybrid Thin Films with High Thermoelectric Performance and Flexibility</title><author>Wei, Meng ; Shi, Xiao‐Lei ; Zheng, Zhuang‐Hao ; Li, Fu ; Liu, Wei‐Di ; Xiang, Li‐Ping ; Xie, Yang‐Su ; Chen, Yue‐Xing ; Duan, Jing‐Yi ; Ma, Hong‐Li ; Liang, Guang‐Xing ; Zhang, Xiang‐Hua ; Fan, Ping ; Chen, Zhi‐Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h3073-a323617ac366a945c2519b0031a790c2a668a2d2124b946b4249a97bae9302233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Antimony telluride</topic><topic>Carrier density</topic><topic>Chemical Sciences</topic><topic>devices</topic><topic>Flexibility</topic><topic>flexible</topic><topic>Materials science</topic><topic>Power factor</topic><topic>Sb 2Te 3</topic><topic>Tellurium</topic><topic>Temperature gradients</topic><topic>Thermal conductivity</topic><topic>Thermal diffusion</topic><topic>Thermoelectricity</topic><topic>thermoelectrics</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Meng</creatorcontrib><creatorcontrib>Shi, Xiao‐Lei</creatorcontrib><creatorcontrib>Zheng, Zhuang‐Hao</creatorcontrib><creatorcontrib>Li, Fu</creatorcontrib><creatorcontrib>Liu, Wei‐Di</creatorcontrib><creatorcontrib>Xiang, Li‐Ping</creatorcontrib><creatorcontrib>Xie, Yang‐Su</creatorcontrib><creatorcontrib>Chen, Yue‐Xing</creatorcontrib><creatorcontrib>Duan, Jing‐Yi</creatorcontrib><creatorcontrib>Ma, Hong‐Li</creatorcontrib><creatorcontrib>Liang, Guang‐Xing</creatorcontrib><creatorcontrib>Zhang, Xiang‐Hua</creatorcontrib><creatorcontrib>Fan, Ping</creatorcontrib><creatorcontrib>Chen, Zhi‐Gang</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Meng</au><au>Shi, Xiao‐Lei</au><au>Zheng, Zhuang‐Hao</au><au>Li, Fu</au><au>Liu, Wei‐Di</au><au>Xiang, Li‐Ping</au><au>Xie, Yang‐Su</au><au>Chen, Yue‐Xing</au><au>Duan, Jing‐Yi</au><au>Ma, Hong‐Li</au><au>Liang, Guang‐Xing</au><au>Zhang, Xiang‐Hua</au><au>Fan, Ping</au><au>Chen, Zhi‐Gang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Directional Thermal Diffusion Realizing Inorganic Sb2Te3/Te Hybrid Thin Films with High Thermoelectric Performance and Flexibility</atitle><jtitle>Advanced functional materials</jtitle><date>2022-11-01</date><risdate>2022</risdate><volume>32</volume><issue>45</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Inorganic films possess much higher thermoelectric performance than their organic counterparts, but their poor flexibilities limit their practical applications. Here, Sb2Te3/Tex hybrid thin films with high thermoelectric performance and flexibility, fabricated via a novel directional thermal diffusion reaction growth method are reported. The directional thermal diffusion enables rationally tuning the Te content in Sb2Te3, which optimizes the carrier density and leads to a significantly enhanced power factor of &gt;20 µW cm–1 K–2, confirmed by both first‐principles calculations and experiments; while dense boundaries between Te and Sb2Te3 nanophases, contribute to the low thermal conductivity of ≈0.86 W m–1 K–1, both induce a high ZT of ≈1 in (Sb2Te3)(Te)1.5 at 453 K, ranking as the top value among the reported flexible films. Besides, thin films also exhibit extraordinary flexibility. A rationally designed flexible device composed of (Sb2Te3)(Te)1.5 thin films as p‐type legs and Bi2Te3 thin films as n‐type legs shows a high power density of &gt;280 µW cm–2 at a temperature difference of 20 K, indicating a great potential for sustainably charging low‐power electronics. A high ZT of ≈1 at 453 K is achieved in an inorganic Sb2Te3/Te hybrid thin film via a novel directional thermal diffusion reaction growth method with extraordinary flexibility, and the rationally designed flexible device shows a high power density by a low‐temperature difference.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202207903</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9309-7993</orcidid><orcidid>https://orcid.org/0000-0002-2475-9826</orcidid><orcidid>https://orcid.org/0000-0003-1104-2583</orcidid><orcidid>https://orcid.org/0000-0003-2051-6576</orcidid><orcidid>https://orcid.org/0000-0003-3034-5862</orcidid><orcidid>https://orcid.org/0000-0003-0905-2547</orcidid><orcidid>https://orcid.org/0000-0002-2180-6543</orcidid><orcidid>https://orcid.org/0000-0001-7617-4881</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2022-11, Vol.32 (45), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_hal_primary_oai_HAL_hal_03797271v1
source Wiley Online Library Journals Frontfile Complete
subjects Antimony telluride
Carrier density
Chemical Sciences
devices
Flexibility
flexible
Materials science
Power factor
Sb 2Te 3
Tellurium
Temperature gradients
Thermal conductivity
Thermal diffusion
Thermoelectricity
thermoelectrics
Thin films
title Directional Thermal Diffusion Realizing Inorganic Sb2Te3/Te Hybrid Thin Films with High Thermoelectric Performance and Flexibility
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T10%3A02%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Directional%20Thermal%20Diffusion%20Realizing%20Inorganic%20Sb2Te3/Te%20Hybrid%20Thin%20Films%20with%20High%20Thermoelectric%20Performance%20and%20Flexibility&rft.jtitle=Advanced%20functional%20materials&rft.au=Wei,%20Meng&rft.date=2022-11-01&rft.volume=32&rft.issue=45&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202207903&rft_dat=%3Cproquest_hal_p%3E2731323437%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2731323437&rft_id=info:pmid/&rfr_iscdi=true