Analytical Nonadiabatic Couplings and Gradients within the State-Averaged Orbital-Optimized Variational Quantum Eigensolver

We introduce several technical and analytical extensions to our recent state-averaged orbital-optimized variational quantum eigensolver (SA-OO-VQE) algorithm (see Yalouz et al. Quantum Sci. Technol. 2021, 6, 024004). Motivated by the limitations of current quantum computers, the first extension cons...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical theory and computation 2022-02, Vol.18 (2), p.776-794
Hauptverfasser: Yalouz, Saad, Koridon, Emiel, Senjean, Bruno, Lasorne, Benjamin, Buda, Francesco, Visscher, Lucas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 794
container_issue 2
container_start_page 776
container_title Journal of chemical theory and computation
container_volume 18
creator Yalouz, Saad
Koridon, Emiel
Senjean, Bruno
Lasorne, Benjamin
Buda, Francesco
Visscher, Lucas
description We introduce several technical and analytical extensions to our recent state-averaged orbital-optimized variational quantum eigensolver (SA-OO-VQE) algorithm (see Yalouz et al. Quantum Sci. Technol. 2021, 6, 024004). Motivated by the limitations of current quantum computers, the first extension consists of an efficient state-resolution procedure to find the SA-OO-VQE eigenstates, and not just the subspace spanned by them, while remaining in the equi-ensemble framework. This approach avoids expensive intermediate resolutions of the eigenstates by postponing this problem to the very end of the full algorithm. The second extension allows for the estimation of analytical gradients and nonadiabatic couplings, which are crucial in many practical situations ranging from the search of conical intersections to the simulation of quantum dynamics, in, for example, photoisomerization reactions. The accuracy of our new implementations is demonstrated on the formaldimine molecule CH2NH (a minimal Schiff base model relevant for the study of photoisomerization in larger biomolecules), for which we also perform a geometry optimization to locate a conical intersection between the ground and first-excited electronic states of the molecule.
doi_str_mv 10.1021/acs.jctc.1c00995
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03796328v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2620082620</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4576-74406f8f62452f46973d354d0ef885c4166b97aab4d6629b19223d7178a4023c3</originalsourceid><addsrcrecordid>eNp1kd1r2zAUxc1YWbtu73sagr10UGf6siw9htC1hbAw9vEqrm05UZDtTJJb2v3zlZs0D4O96EpXv3N0xcmyDwTPCKbkC9Rhtq1jPSM1xkoVr7IzUnCVK0HF6-OeyNPsbQhbjBnjlL3JTlmBqVJSnmV_5z24h2hrcOjb0ENjoYJ0RIth3DnbrwOCvkHXPt2YPgZ0b-PG9ihuDPoRIZp8fmc8rE2DVr6yEVy-2kXb2cfU-Q3eJrNk69D3Efo4dujKrk0fBpdU77KTFlww7w_1PPv19ern4iZfrq5vF_NlDrwoRV5yjkUrW0F5QVsuVMkaVvAGm1bKouZEiEqVABVvhKCqIopS1pSklMAxZTU7zz7vfTfg9M7bDvyDHsDqm_lSTz3MSiUYlXcksRd7dueHP6MJUXc21MY56M0wBk0FxVhOa0I__YNuh9Gnv04Uo0qq4pnCe6r2QwjetMcJCNZTiDqFqKcQ9SHEJPl4MB6rzjRHwUtqCbjcA8_Sl0f_6_cEMoenbA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2632989520</pqid></control><display><type>article</type><title>Analytical Nonadiabatic Couplings and Gradients within the State-Averaged Orbital-Optimized Variational Quantum Eigensolver</title><source>American Chemical Society Journals</source><creator>Yalouz, Saad ; Koridon, Emiel ; Senjean, Bruno ; Lasorne, Benjamin ; Buda, Francesco ; Visscher, Lucas</creator><creatorcontrib>Yalouz, Saad ; Koridon, Emiel ; Senjean, Bruno ; Lasorne, Benjamin ; Buda, Francesco ; Visscher, Lucas</creatorcontrib><description>We introduce several technical and analytical extensions to our recent state-averaged orbital-optimized variational quantum eigensolver (SA-OO-VQE) algorithm (see Yalouz et al. Quantum Sci. Technol. 2021, 6, 024004). Motivated by the limitations of current quantum computers, the first extension consists of an efficient state-resolution procedure to find the SA-OO-VQE eigenstates, and not just the subspace spanned by them, while remaining in the equi-ensemble framework. This approach avoids expensive intermediate resolutions of the eigenstates by postponing this problem to the very end of the full algorithm. The second extension allows for the estimation of analytical gradients and nonadiabatic couplings, which are crucial in many practical situations ranging from the search of conical intersections to the simulation of quantum dynamics, in, for example, photoisomerization reactions. The accuracy of our new implementations is demonstrated on the formaldimine molecule CH2NH (a minimal Schiff base model relevant for the study of photoisomerization in larger biomolecules), for which we also perform a geometry optimization to locate a conical intersection between the ground and first-excited electronic states of the molecule.</description><identifier>ISSN: 1549-9618</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/acs.jctc.1c00995</identifier><identifier>PMID: 35029988</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Algorithms ; Biomolecules ; Coupling (molecular) ; Couplings ; Eigenvectors ; Electron states ; Imines ; Intersections ; Mathematical analysis ; Optimization ; Physics ; Quantum computers ; Quantum Electronic Structure ; Quantum Physics</subject><ispartof>Journal of chemical theory and computation, 2022-02, Vol.18 (2), p.776-794</ispartof><rights>2022 American Chemical Society</rights><rights>Copyright American Chemical Society Feb 8, 2022</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4576-74406f8f62452f46973d354d0ef885c4166b97aab4d6629b19223d7178a4023c3</citedby><cites>FETCH-LOGICAL-a4576-74406f8f62452f46973d354d0ef885c4166b97aab4d6629b19223d7178a4023c3</cites><orcidid>0000-0002-7748-6243 ; 0000-0002-9943-1905 ; 0000-0002-8818-3379 ; 0000-0002-7157-7654</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jctc.1c00995$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jctc.1c00995$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35029988$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03796328$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Yalouz, Saad</creatorcontrib><creatorcontrib>Koridon, Emiel</creatorcontrib><creatorcontrib>Senjean, Bruno</creatorcontrib><creatorcontrib>Lasorne, Benjamin</creatorcontrib><creatorcontrib>Buda, Francesco</creatorcontrib><creatorcontrib>Visscher, Lucas</creatorcontrib><title>Analytical Nonadiabatic Couplings and Gradients within the State-Averaged Orbital-Optimized Variational Quantum Eigensolver</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>We introduce several technical and analytical extensions to our recent state-averaged orbital-optimized variational quantum eigensolver (SA-OO-VQE) algorithm (see Yalouz et al. Quantum Sci. Technol. 2021, 6, 024004). Motivated by the limitations of current quantum computers, the first extension consists of an efficient state-resolution procedure to find the SA-OO-VQE eigenstates, and not just the subspace spanned by them, while remaining in the equi-ensemble framework. This approach avoids expensive intermediate resolutions of the eigenstates by postponing this problem to the very end of the full algorithm. The second extension allows for the estimation of analytical gradients and nonadiabatic couplings, which are crucial in many practical situations ranging from the search of conical intersections to the simulation of quantum dynamics, in, for example, photoisomerization reactions. The accuracy of our new implementations is demonstrated on the formaldimine molecule CH2NH (a minimal Schiff base model relevant for the study of photoisomerization in larger biomolecules), for which we also perform a geometry optimization to locate a conical intersection between the ground and first-excited electronic states of the molecule.</description><subject>Algorithms</subject><subject>Biomolecules</subject><subject>Coupling (molecular)</subject><subject>Couplings</subject><subject>Eigenvectors</subject><subject>Electron states</subject><subject>Imines</subject><subject>Intersections</subject><subject>Mathematical analysis</subject><subject>Optimization</subject><subject>Physics</subject><subject>Quantum computers</subject><subject>Quantum Electronic Structure</subject><subject>Quantum Physics</subject><issn>1549-9618</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kd1r2zAUxc1YWbtu73sagr10UGf6siw9htC1hbAw9vEqrm05UZDtTJJb2v3zlZs0D4O96EpXv3N0xcmyDwTPCKbkC9Rhtq1jPSM1xkoVr7IzUnCVK0HF6-OeyNPsbQhbjBnjlL3JTlmBqVJSnmV_5z24h2hrcOjb0ENjoYJ0RIth3DnbrwOCvkHXPt2YPgZ0b-PG9ihuDPoRIZp8fmc8rE2DVr6yEVy-2kXb2cfU-Q3eJrNk69D3Efo4dujKrk0fBpdU77KTFlww7w_1PPv19ern4iZfrq5vF_NlDrwoRV5yjkUrW0F5QVsuVMkaVvAGm1bKouZEiEqVABVvhKCqIopS1pSklMAxZTU7zz7vfTfg9M7bDvyDHsDqm_lSTz3MSiUYlXcksRd7dueHP6MJUXc21MY56M0wBk0FxVhOa0I__YNuh9Gnv04Uo0qq4pnCe6r2QwjetMcJCNZTiDqFqKcQ9SHEJPl4MB6rzjRHwUtqCbjcA8_Sl0f_6_cEMoenbA</recordid><startdate>20220208</startdate><enddate>20220208</enddate><creator>Yalouz, Saad</creator><creator>Koridon, Emiel</creator><creator>Senjean, Bruno</creator><creator>Lasorne, Benjamin</creator><creator>Buda, Francesco</creator><creator>Visscher, Lucas</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-7748-6243</orcidid><orcidid>https://orcid.org/0000-0002-9943-1905</orcidid><orcidid>https://orcid.org/0000-0002-8818-3379</orcidid><orcidid>https://orcid.org/0000-0002-7157-7654</orcidid></search><sort><creationdate>20220208</creationdate><title>Analytical Nonadiabatic Couplings and Gradients within the State-Averaged Orbital-Optimized Variational Quantum Eigensolver</title><author>Yalouz, Saad ; Koridon, Emiel ; Senjean, Bruno ; Lasorne, Benjamin ; Buda, Francesco ; Visscher, Lucas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4576-74406f8f62452f46973d354d0ef885c4166b97aab4d6629b19223d7178a4023c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Biomolecules</topic><topic>Coupling (molecular)</topic><topic>Couplings</topic><topic>Eigenvectors</topic><topic>Electron states</topic><topic>Imines</topic><topic>Intersections</topic><topic>Mathematical analysis</topic><topic>Optimization</topic><topic>Physics</topic><topic>Quantum computers</topic><topic>Quantum Electronic Structure</topic><topic>Quantum Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yalouz, Saad</creatorcontrib><creatorcontrib>Koridon, Emiel</creatorcontrib><creatorcontrib>Senjean, Bruno</creatorcontrib><creatorcontrib>Lasorne, Benjamin</creatorcontrib><creatorcontrib>Buda, Francesco</creatorcontrib><creatorcontrib>Visscher, Lucas</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yalouz, Saad</au><au>Koridon, Emiel</au><au>Senjean, Bruno</au><au>Lasorne, Benjamin</au><au>Buda, Francesco</au><au>Visscher, Lucas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytical Nonadiabatic Couplings and Gradients within the State-Averaged Orbital-Optimized Variational Quantum Eigensolver</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2022-02-08</date><risdate>2022</risdate><volume>18</volume><issue>2</issue><spage>776</spage><epage>794</epage><pages>776-794</pages><issn>1549-9618</issn><eissn>1549-9626</eissn><abstract>We introduce several technical and analytical extensions to our recent state-averaged orbital-optimized variational quantum eigensolver (SA-OO-VQE) algorithm (see Yalouz et al. Quantum Sci. Technol. 2021, 6, 024004). Motivated by the limitations of current quantum computers, the first extension consists of an efficient state-resolution procedure to find the SA-OO-VQE eigenstates, and not just the subspace spanned by them, while remaining in the equi-ensemble framework. This approach avoids expensive intermediate resolutions of the eigenstates by postponing this problem to the very end of the full algorithm. The second extension allows for the estimation of analytical gradients and nonadiabatic couplings, which are crucial in many practical situations ranging from the search of conical intersections to the simulation of quantum dynamics, in, for example, photoisomerization reactions. The accuracy of our new implementations is demonstrated on the formaldimine molecule CH2NH (a minimal Schiff base model relevant for the study of photoisomerization in larger biomolecules), for which we also perform a geometry optimization to locate a conical intersection between the ground and first-excited electronic states of the molecule.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>35029988</pmid><doi>10.1021/acs.jctc.1c00995</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-7748-6243</orcidid><orcidid>https://orcid.org/0000-0002-9943-1905</orcidid><orcidid>https://orcid.org/0000-0002-8818-3379</orcidid><orcidid>https://orcid.org/0000-0002-7157-7654</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1549-9618
ispartof Journal of chemical theory and computation, 2022-02, Vol.18 (2), p.776-794
issn 1549-9618
1549-9626
language eng
recordid cdi_hal_primary_oai_HAL_hal_03796328v1
source American Chemical Society Journals
subjects Algorithms
Biomolecules
Coupling (molecular)
Couplings
Eigenvectors
Electron states
Imines
Intersections
Mathematical analysis
Optimization
Physics
Quantum computers
Quantum Electronic Structure
Quantum Physics
title Analytical Nonadiabatic Couplings and Gradients within the State-Averaged Orbital-Optimized Variational Quantum Eigensolver
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T17%3A26%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytical%20Nonadiabatic%20Couplings%20and%20Gradients%20within%20the%20State-Averaged%20Orbital-Optimized%20Variational%20Quantum%20Eigensolver&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Yalouz,%20Saad&rft.date=2022-02-08&rft.volume=18&rft.issue=2&rft.spage=776&rft.epage=794&rft.pages=776-794&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/acs.jctc.1c00995&rft_dat=%3Cproquest_hal_p%3E2620082620%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2632989520&rft_id=info:pmid/35029988&rfr_iscdi=true