Analytical Nonadiabatic Couplings and Gradients within the State-Averaged Orbital-Optimized Variational Quantum Eigensolver
We introduce several technical and analytical extensions to our recent state-averaged orbital-optimized variational quantum eigensolver (SA-OO-VQE) algorithm (see Yalouz et al. Quantum Sci. Technol. 2021, 6, 024004). Motivated by the limitations of current quantum computers, the first extension cons...
Gespeichert in:
Veröffentlicht in: | Journal of chemical theory and computation 2022-02, Vol.18 (2), p.776-794 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 794 |
---|---|
container_issue | 2 |
container_start_page | 776 |
container_title | Journal of chemical theory and computation |
container_volume | 18 |
creator | Yalouz, Saad Koridon, Emiel Senjean, Bruno Lasorne, Benjamin Buda, Francesco Visscher, Lucas |
description | We introduce several technical and analytical extensions to our recent state-averaged orbital-optimized variational quantum eigensolver (SA-OO-VQE) algorithm (see Yalouz et al. Quantum Sci. Technol. 2021, 6, 024004). Motivated by the limitations of current quantum computers, the first extension consists of an efficient state-resolution procedure to find the SA-OO-VQE eigenstates, and not just the subspace spanned by them, while remaining in the equi-ensemble framework. This approach avoids expensive intermediate resolutions of the eigenstates by postponing this problem to the very end of the full algorithm. The second extension allows for the estimation of analytical gradients and nonadiabatic couplings, which are crucial in many practical situations ranging from the search of conical intersections to the simulation of quantum dynamics, in, for example, photoisomerization reactions. The accuracy of our new implementations is demonstrated on the formaldimine molecule CH2NH (a minimal Schiff base model relevant for the study of photoisomerization in larger biomolecules), for which we also perform a geometry optimization to locate a conical intersection between the ground and first-excited electronic states of the molecule. |
doi_str_mv | 10.1021/acs.jctc.1c00995 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03796328v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2620082620</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4576-74406f8f62452f46973d354d0ef885c4166b97aab4d6629b19223d7178a4023c3</originalsourceid><addsrcrecordid>eNp1kd1r2zAUxc1YWbtu73sagr10UGf6siw9htC1hbAw9vEqrm05UZDtTJJb2v3zlZs0D4O96EpXv3N0xcmyDwTPCKbkC9Rhtq1jPSM1xkoVr7IzUnCVK0HF6-OeyNPsbQhbjBnjlL3JTlmBqVJSnmV_5z24h2hrcOjb0ENjoYJ0RIth3DnbrwOCvkHXPt2YPgZ0b-PG9ihuDPoRIZp8fmc8rE2DVr6yEVy-2kXb2cfU-Q3eJrNk69D3Efo4dujKrk0fBpdU77KTFlww7w_1PPv19ern4iZfrq5vF_NlDrwoRV5yjkUrW0F5QVsuVMkaVvAGm1bKouZEiEqVABVvhKCqIopS1pSklMAxZTU7zz7vfTfg9M7bDvyDHsDqm_lSTz3MSiUYlXcksRd7dueHP6MJUXc21MY56M0wBk0FxVhOa0I__YNuh9Gnv04Uo0qq4pnCe6r2QwjetMcJCNZTiDqFqKcQ9SHEJPl4MB6rzjRHwUtqCbjcA8_Sl0f_6_cEMoenbA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2632989520</pqid></control><display><type>article</type><title>Analytical Nonadiabatic Couplings and Gradients within the State-Averaged Orbital-Optimized Variational Quantum Eigensolver</title><source>American Chemical Society Journals</source><creator>Yalouz, Saad ; Koridon, Emiel ; Senjean, Bruno ; Lasorne, Benjamin ; Buda, Francesco ; Visscher, Lucas</creator><creatorcontrib>Yalouz, Saad ; Koridon, Emiel ; Senjean, Bruno ; Lasorne, Benjamin ; Buda, Francesco ; Visscher, Lucas</creatorcontrib><description>We introduce several technical and analytical extensions to our recent state-averaged orbital-optimized variational quantum eigensolver (SA-OO-VQE) algorithm (see Yalouz et al. Quantum Sci. Technol. 2021, 6, 024004). Motivated by the limitations of current quantum computers, the first extension consists of an efficient state-resolution procedure to find the SA-OO-VQE eigenstates, and not just the subspace spanned by them, while remaining in the equi-ensemble framework. This approach avoids expensive intermediate resolutions of the eigenstates by postponing this problem to the very end of the full algorithm. The second extension allows for the estimation of analytical gradients and nonadiabatic couplings, which are crucial in many practical situations ranging from the search of conical intersections to the simulation of quantum dynamics, in, for example, photoisomerization reactions. The accuracy of our new implementations is demonstrated on the formaldimine molecule CH2NH (a minimal Schiff base model relevant for the study of photoisomerization in larger biomolecules), for which we also perform a geometry optimization to locate a conical intersection between the ground and first-excited electronic states of the molecule.</description><identifier>ISSN: 1549-9618</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/acs.jctc.1c00995</identifier><identifier>PMID: 35029988</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Algorithms ; Biomolecules ; Coupling (molecular) ; Couplings ; Eigenvectors ; Electron states ; Imines ; Intersections ; Mathematical analysis ; Optimization ; Physics ; Quantum computers ; Quantum Electronic Structure ; Quantum Physics</subject><ispartof>Journal of chemical theory and computation, 2022-02, Vol.18 (2), p.776-794</ispartof><rights>2022 American Chemical Society</rights><rights>Copyright American Chemical Society Feb 8, 2022</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4576-74406f8f62452f46973d354d0ef885c4166b97aab4d6629b19223d7178a4023c3</citedby><cites>FETCH-LOGICAL-a4576-74406f8f62452f46973d354d0ef885c4166b97aab4d6629b19223d7178a4023c3</cites><orcidid>0000-0002-7748-6243 ; 0000-0002-9943-1905 ; 0000-0002-8818-3379 ; 0000-0002-7157-7654</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jctc.1c00995$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jctc.1c00995$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35029988$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03796328$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Yalouz, Saad</creatorcontrib><creatorcontrib>Koridon, Emiel</creatorcontrib><creatorcontrib>Senjean, Bruno</creatorcontrib><creatorcontrib>Lasorne, Benjamin</creatorcontrib><creatorcontrib>Buda, Francesco</creatorcontrib><creatorcontrib>Visscher, Lucas</creatorcontrib><title>Analytical Nonadiabatic Couplings and Gradients within the State-Averaged Orbital-Optimized Variational Quantum Eigensolver</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>We introduce several technical and analytical extensions to our recent state-averaged orbital-optimized variational quantum eigensolver (SA-OO-VQE) algorithm (see Yalouz et al. Quantum Sci. Technol. 2021, 6, 024004). Motivated by the limitations of current quantum computers, the first extension consists of an efficient state-resolution procedure to find the SA-OO-VQE eigenstates, and not just the subspace spanned by them, while remaining in the equi-ensemble framework. This approach avoids expensive intermediate resolutions of the eigenstates by postponing this problem to the very end of the full algorithm. The second extension allows for the estimation of analytical gradients and nonadiabatic couplings, which are crucial in many practical situations ranging from the search of conical intersections to the simulation of quantum dynamics, in, for example, photoisomerization reactions. The accuracy of our new implementations is demonstrated on the formaldimine molecule CH2NH (a minimal Schiff base model relevant for the study of photoisomerization in larger biomolecules), for which we also perform a geometry optimization to locate a conical intersection between the ground and first-excited electronic states of the molecule.</description><subject>Algorithms</subject><subject>Biomolecules</subject><subject>Coupling (molecular)</subject><subject>Couplings</subject><subject>Eigenvectors</subject><subject>Electron states</subject><subject>Imines</subject><subject>Intersections</subject><subject>Mathematical analysis</subject><subject>Optimization</subject><subject>Physics</subject><subject>Quantum computers</subject><subject>Quantum Electronic Structure</subject><subject>Quantum Physics</subject><issn>1549-9618</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kd1r2zAUxc1YWbtu73sagr10UGf6siw9htC1hbAw9vEqrm05UZDtTJJb2v3zlZs0D4O96EpXv3N0xcmyDwTPCKbkC9Rhtq1jPSM1xkoVr7IzUnCVK0HF6-OeyNPsbQhbjBnjlL3JTlmBqVJSnmV_5z24h2hrcOjb0ENjoYJ0RIth3DnbrwOCvkHXPt2YPgZ0b-PG9ihuDPoRIZp8fmc8rE2DVr6yEVy-2kXb2cfU-Q3eJrNk69D3Efo4dujKrk0fBpdU77KTFlww7w_1PPv19ern4iZfrq5vF_NlDrwoRV5yjkUrW0F5QVsuVMkaVvAGm1bKouZEiEqVABVvhKCqIopS1pSklMAxZTU7zz7vfTfg9M7bDvyDHsDqm_lSTz3MSiUYlXcksRd7dueHP6MJUXc21MY56M0wBk0FxVhOa0I__YNuh9Gnv04Uo0qq4pnCe6r2QwjetMcJCNZTiDqFqKcQ9SHEJPl4MB6rzjRHwUtqCbjcA8_Sl0f_6_cEMoenbA</recordid><startdate>20220208</startdate><enddate>20220208</enddate><creator>Yalouz, Saad</creator><creator>Koridon, Emiel</creator><creator>Senjean, Bruno</creator><creator>Lasorne, Benjamin</creator><creator>Buda, Francesco</creator><creator>Visscher, Lucas</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-7748-6243</orcidid><orcidid>https://orcid.org/0000-0002-9943-1905</orcidid><orcidid>https://orcid.org/0000-0002-8818-3379</orcidid><orcidid>https://orcid.org/0000-0002-7157-7654</orcidid></search><sort><creationdate>20220208</creationdate><title>Analytical Nonadiabatic Couplings and Gradients within the State-Averaged Orbital-Optimized Variational Quantum Eigensolver</title><author>Yalouz, Saad ; Koridon, Emiel ; Senjean, Bruno ; Lasorne, Benjamin ; Buda, Francesco ; Visscher, Lucas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4576-74406f8f62452f46973d354d0ef885c4166b97aab4d6629b19223d7178a4023c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Biomolecules</topic><topic>Coupling (molecular)</topic><topic>Couplings</topic><topic>Eigenvectors</topic><topic>Electron states</topic><topic>Imines</topic><topic>Intersections</topic><topic>Mathematical analysis</topic><topic>Optimization</topic><topic>Physics</topic><topic>Quantum computers</topic><topic>Quantum Electronic Structure</topic><topic>Quantum Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yalouz, Saad</creatorcontrib><creatorcontrib>Koridon, Emiel</creatorcontrib><creatorcontrib>Senjean, Bruno</creatorcontrib><creatorcontrib>Lasorne, Benjamin</creatorcontrib><creatorcontrib>Buda, Francesco</creatorcontrib><creatorcontrib>Visscher, Lucas</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yalouz, Saad</au><au>Koridon, Emiel</au><au>Senjean, Bruno</au><au>Lasorne, Benjamin</au><au>Buda, Francesco</au><au>Visscher, Lucas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytical Nonadiabatic Couplings and Gradients within the State-Averaged Orbital-Optimized Variational Quantum Eigensolver</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2022-02-08</date><risdate>2022</risdate><volume>18</volume><issue>2</issue><spage>776</spage><epage>794</epage><pages>776-794</pages><issn>1549-9618</issn><eissn>1549-9626</eissn><abstract>We introduce several technical and analytical extensions to our recent state-averaged orbital-optimized variational quantum eigensolver (SA-OO-VQE) algorithm (see Yalouz et al. Quantum Sci. Technol. 2021, 6, 024004). Motivated by the limitations of current quantum computers, the first extension consists of an efficient state-resolution procedure to find the SA-OO-VQE eigenstates, and not just the subspace spanned by them, while remaining in the equi-ensemble framework. This approach avoids expensive intermediate resolutions of the eigenstates by postponing this problem to the very end of the full algorithm. The second extension allows for the estimation of analytical gradients and nonadiabatic couplings, which are crucial in many practical situations ranging from the search of conical intersections to the simulation of quantum dynamics, in, for example, photoisomerization reactions. The accuracy of our new implementations is demonstrated on the formaldimine molecule CH2NH (a minimal Schiff base model relevant for the study of photoisomerization in larger biomolecules), for which we also perform a geometry optimization to locate a conical intersection between the ground and first-excited electronic states of the molecule.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>35029988</pmid><doi>10.1021/acs.jctc.1c00995</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-7748-6243</orcidid><orcidid>https://orcid.org/0000-0002-9943-1905</orcidid><orcidid>https://orcid.org/0000-0002-8818-3379</orcidid><orcidid>https://orcid.org/0000-0002-7157-7654</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-9618 |
ispartof | Journal of chemical theory and computation, 2022-02, Vol.18 (2), p.776-794 |
issn | 1549-9618 1549-9626 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03796328v1 |
source | American Chemical Society Journals |
subjects | Algorithms Biomolecules Coupling (molecular) Couplings Eigenvectors Electron states Imines Intersections Mathematical analysis Optimization Physics Quantum computers Quantum Electronic Structure Quantum Physics |
title | Analytical Nonadiabatic Couplings and Gradients within the State-Averaged Orbital-Optimized Variational Quantum Eigensolver |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T17%3A26%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytical%20Nonadiabatic%20Couplings%20and%20Gradients%20within%20the%20State-Averaged%20Orbital-Optimized%20Variational%20Quantum%20Eigensolver&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Yalouz,%20Saad&rft.date=2022-02-08&rft.volume=18&rft.issue=2&rft.spage=776&rft.epage=794&rft.pages=776-794&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/acs.jctc.1c00995&rft_dat=%3Cproquest_hal_p%3E2620082620%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2632989520&rft_id=info:pmid/35029988&rfr_iscdi=true |