Mixed-Reference Spin-Flip Time-Dependent Density Functional Theory for Accurate X‑ray Absorption Spectroscopy
It is demonstrated that the challenging core-hole particle (CHP) orbital relaxation for core electron spectra can be readily achieved by the mixed-reference spin-flip (MRSF)–time-dependent density functional theory (TDDFT). With the additional scalar relativistic effects on K-edge excitation energie...
Gespeichert in:
Veröffentlicht in: | Journal of chemical theory and computation 2022-10, Vol.18 (10), p.6240-6250 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6250 |
---|---|
container_issue | 10 |
container_start_page | 6240 |
container_title | Journal of chemical theory and computation |
container_volume | 18 |
creator | Park, Woojin Alías-Rodríguez, Marc Cho, Daeheum Lee, Seunghoon Huix-Rotllant, Miquel Choi, Cheol Ho |
description | It is demonstrated that the challenging core-hole particle (CHP) orbital relaxation for core electron spectra can be readily achieved by the mixed-reference spin-flip (MRSF)–time-dependent density functional theory (TDDFT). With the additional scalar relativistic effects on K-edge excitation energies of 24 second- and 17 third-row molecules, the particular ΔCHP–MRSF(R) exhibited near perfect predictions with RMSE ∼0.5 eV, featuring a median value of 0.3 and an interquartile range of 0.4. Overall, the CHP effect is 2–4 times stronger than relativistic ones, contributing more than 20 eV in the cases of sulfur and chlorine third-row atoms. Such high precision allows to explain the splitting and spectral shapes of O, N, and C atom K-edges in the ground state of thymine with atom as well as orbital specific accuracy. The same protocol with a double hole particle relaxation also produced remarkably accurate K-edge spectra of core to valence hole excitation energies from the first (n O8π*) and second (ππ*) excited states of thymine, confirming the assignment of 1s → n excitation for the experimentally observed 526.4 eV peak. Regarding both accuracy and practicality, therefore, MRSF–TDDFT provides a promising protocol for core electron spectra of both ground and excited electronic states alike. |
doi_str_mv | 10.1021/acs.jctc.2c00746 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03790799v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2724310947</sourcerecordid><originalsourceid>FETCH-LOGICAL-a417t-99c49ec727a7c9d71de0b9f048dc567257d3d35d102d723f40e239b9f14626063</originalsourceid><addsrcrecordid>eNp1kU1L7DAYhYso-Ll3GXCjYMd8TTNZDupchRFBR3AXYvIWM3SamrRid_6F-xfvL7mpoy4EVwl5n3N4T06WHRI8IpiSM23iaGlaM6IGY8GLjWyHjLnMZUGLze87mWxnuzEuMWaMU7aT-Rv3Bja_gxIC1AbQfePqfFa5Bi3cCvILaKC2ULfoAuro2h7Nutq0zte6Qotn8KFHpQ9oakwXdAvo8d_736B7NH2KPjQDmCzBtMFH45t-P9sqdRXh4PPcyx5ml4vzq3x---f6fDrPNSeizaU0XIIRVGhhpBXEAn6SJeYTa8aFoGNhmWVjm6JbQVnJMVAmE0F4yosLtpedrH2fdaWa4FY69Mprp66mczW8YSYkFlK-ksQer9km-JcOYqtWLhqoKl2D76KigkwKxiTFCT36gS59F9JfDBTljGDJRaLwmjIpdQxQfm9AsBraUqktNbSlPttKktO15GPy5fkr_h9hQJhr</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2724310947</pqid></control><display><type>article</type><title>Mixed-Reference Spin-Flip Time-Dependent Density Functional Theory for Accurate X‑ray Absorption Spectroscopy</title><source>ACS Publications</source><creator>Park, Woojin ; Alías-Rodríguez, Marc ; Cho, Daeheum ; Lee, Seunghoon ; Huix-Rotllant, Miquel ; Choi, Cheol Ho</creator><creatorcontrib>Park, Woojin ; Alías-Rodríguez, Marc ; Cho, Daeheum ; Lee, Seunghoon ; Huix-Rotllant, Miquel ; Choi, Cheol Ho</creatorcontrib><description>It is demonstrated that the challenging core-hole particle (CHP) orbital relaxation for core electron spectra can be readily achieved by the mixed-reference spin-flip (MRSF)–time-dependent density functional theory (TDDFT). With the additional scalar relativistic effects on K-edge excitation energies of 24 second- and 17 third-row molecules, the particular ΔCHP–MRSF(R) exhibited near perfect predictions with RMSE ∼0.5 eV, featuring a median value of 0.3 and an interquartile range of 0.4. Overall, the CHP effect is 2–4 times stronger than relativistic ones, contributing more than 20 eV in the cases of sulfur and chlorine third-row atoms. Such high precision allows to explain the splitting and spectral shapes of O, N, and C atom K-edges in the ground state of thymine with atom as well as orbital specific accuracy. The same protocol with a double hole particle relaxation also produced remarkably accurate K-edge spectra of core to valence hole excitation energies from the first (n O8π*) and second (ππ*) excited states of thymine, confirming the assignment of 1s → n excitation for the experimentally observed 526.4 eV peak. Regarding both accuracy and practicality, therefore, MRSF–TDDFT provides a promising protocol for core electron spectra of both ground and excited electronic states alike.</description><identifier>ISSN: 1549-9618</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/acs.jctc.2c00746</identifier><language>eng</language><publisher>Washington: American Chemical Society</publisher><subject>Absorption spectroscopy ; Chemical Sciences ; Chlorine ; Density functional theory ; Electron states ; Excitation ; or physical chemistry ; Relativistic effects ; Spectra ; Spectroscopy and Excited States ; Spectrum analysis ; Theoretical and ; Thymine ; Time dependence ; X ray absorption</subject><ispartof>Journal of chemical theory and computation, 2022-10, Vol.18 (10), p.6240-6250</ispartof><rights>2022 American Chemical Society</rights><rights>Copyright American Chemical Society Oct 11, 2022</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a417t-99c49ec727a7c9d71de0b9f048dc567257d3d35d102d723f40e239b9f14626063</citedby><cites>FETCH-LOGICAL-a417t-99c49ec727a7c9d71de0b9f048dc567257d3d35d102d723f40e239b9f14626063</cites><orcidid>0000-0003-3665-587X ; 0000-0002-8757-1396 ; 0000-0002-2131-7328 ; 0000-0002-0322-4291</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jctc.2c00746$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jctc.2c00746$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03790799$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Park, Woojin</creatorcontrib><creatorcontrib>Alías-Rodríguez, Marc</creatorcontrib><creatorcontrib>Cho, Daeheum</creatorcontrib><creatorcontrib>Lee, Seunghoon</creatorcontrib><creatorcontrib>Huix-Rotllant, Miquel</creatorcontrib><creatorcontrib>Choi, Cheol Ho</creatorcontrib><title>Mixed-Reference Spin-Flip Time-Dependent Density Functional Theory for Accurate X‑ray Absorption Spectroscopy</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>It is demonstrated that the challenging core-hole particle (CHP) orbital relaxation for core electron spectra can be readily achieved by the mixed-reference spin-flip (MRSF)–time-dependent density functional theory (TDDFT). With the additional scalar relativistic effects on K-edge excitation energies of 24 second- and 17 third-row molecules, the particular ΔCHP–MRSF(R) exhibited near perfect predictions with RMSE ∼0.5 eV, featuring a median value of 0.3 and an interquartile range of 0.4. Overall, the CHP effect is 2–4 times stronger than relativistic ones, contributing more than 20 eV in the cases of sulfur and chlorine third-row atoms. Such high precision allows to explain the splitting and spectral shapes of O, N, and C atom K-edges in the ground state of thymine with atom as well as orbital specific accuracy. The same protocol with a double hole particle relaxation also produced remarkably accurate K-edge spectra of core to valence hole excitation energies from the first (n O8π*) and second (ππ*) excited states of thymine, confirming the assignment of 1s → n excitation for the experimentally observed 526.4 eV peak. Regarding both accuracy and practicality, therefore, MRSF–TDDFT provides a promising protocol for core electron spectra of both ground and excited electronic states alike.</description><subject>Absorption spectroscopy</subject><subject>Chemical Sciences</subject><subject>Chlorine</subject><subject>Density functional theory</subject><subject>Electron states</subject><subject>Excitation</subject><subject>or physical chemistry</subject><subject>Relativistic effects</subject><subject>Spectra</subject><subject>Spectroscopy and Excited States</subject><subject>Spectrum analysis</subject><subject>Theoretical and</subject><subject>Thymine</subject><subject>Time dependence</subject><subject>X ray absorption</subject><issn>1549-9618</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kU1L7DAYhYso-Ll3GXCjYMd8TTNZDupchRFBR3AXYvIWM3SamrRid_6F-xfvL7mpoy4EVwl5n3N4T06WHRI8IpiSM23iaGlaM6IGY8GLjWyHjLnMZUGLze87mWxnuzEuMWaMU7aT-Rv3Bja_gxIC1AbQfePqfFa5Bi3cCvILaKC2ULfoAuro2h7Nutq0zte6Qotn8KFHpQ9oakwXdAvo8d_736B7NH2KPjQDmCzBtMFH45t-P9sqdRXh4PPcyx5ml4vzq3x---f6fDrPNSeizaU0XIIRVGhhpBXEAn6SJeYTa8aFoGNhmWVjm6JbQVnJMVAmE0F4yosLtpedrH2fdaWa4FY69Mprp66mczW8YSYkFlK-ksQer9km-JcOYqtWLhqoKl2D76KigkwKxiTFCT36gS59F9JfDBTljGDJRaLwmjIpdQxQfm9AsBraUqktNbSlPttKktO15GPy5fkr_h9hQJhr</recordid><startdate>20221011</startdate><enddate>20221011</enddate><creator>Park, Woojin</creator><creator>Alías-Rodríguez, Marc</creator><creator>Cho, Daeheum</creator><creator>Lee, Seunghoon</creator><creator>Huix-Rotllant, Miquel</creator><creator>Choi, Cheol Ho</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-3665-587X</orcidid><orcidid>https://orcid.org/0000-0002-8757-1396</orcidid><orcidid>https://orcid.org/0000-0002-2131-7328</orcidid><orcidid>https://orcid.org/0000-0002-0322-4291</orcidid></search><sort><creationdate>20221011</creationdate><title>Mixed-Reference Spin-Flip Time-Dependent Density Functional Theory for Accurate X‑ray Absorption Spectroscopy</title><author>Park, Woojin ; Alías-Rodríguez, Marc ; Cho, Daeheum ; Lee, Seunghoon ; Huix-Rotllant, Miquel ; Choi, Cheol Ho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a417t-99c49ec727a7c9d71de0b9f048dc567257d3d35d102d723f40e239b9f14626063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Absorption spectroscopy</topic><topic>Chemical Sciences</topic><topic>Chlorine</topic><topic>Density functional theory</topic><topic>Electron states</topic><topic>Excitation</topic><topic>or physical chemistry</topic><topic>Relativistic effects</topic><topic>Spectra</topic><topic>Spectroscopy and Excited States</topic><topic>Spectrum analysis</topic><topic>Theoretical and</topic><topic>Thymine</topic><topic>Time dependence</topic><topic>X ray absorption</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Woojin</creatorcontrib><creatorcontrib>Alías-Rodríguez, Marc</creatorcontrib><creatorcontrib>Cho, Daeheum</creatorcontrib><creatorcontrib>Lee, Seunghoon</creatorcontrib><creatorcontrib>Huix-Rotllant, Miquel</creatorcontrib><creatorcontrib>Choi, Cheol Ho</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Woojin</au><au>Alías-Rodríguez, Marc</au><au>Cho, Daeheum</au><au>Lee, Seunghoon</au><au>Huix-Rotllant, Miquel</au><au>Choi, Cheol Ho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mixed-Reference Spin-Flip Time-Dependent Density Functional Theory for Accurate X‑ray Absorption Spectroscopy</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2022-10-11</date><risdate>2022</risdate><volume>18</volume><issue>10</issue><spage>6240</spage><epage>6250</epage><pages>6240-6250</pages><issn>1549-9618</issn><eissn>1549-9626</eissn><abstract>It is demonstrated that the challenging core-hole particle (CHP) orbital relaxation for core electron spectra can be readily achieved by the mixed-reference spin-flip (MRSF)–time-dependent density functional theory (TDDFT). With the additional scalar relativistic effects on K-edge excitation energies of 24 second- and 17 third-row molecules, the particular ΔCHP–MRSF(R) exhibited near perfect predictions with RMSE ∼0.5 eV, featuring a median value of 0.3 and an interquartile range of 0.4. Overall, the CHP effect is 2–4 times stronger than relativistic ones, contributing more than 20 eV in the cases of sulfur and chlorine third-row atoms. Such high precision allows to explain the splitting and spectral shapes of O, N, and C atom K-edges in the ground state of thymine with atom as well as orbital specific accuracy. The same protocol with a double hole particle relaxation also produced remarkably accurate K-edge spectra of core to valence hole excitation energies from the first (n O8π*) and second (ππ*) excited states of thymine, confirming the assignment of 1s → n excitation for the experimentally observed 526.4 eV peak. Regarding both accuracy and practicality, therefore, MRSF–TDDFT provides a promising protocol for core electron spectra of both ground and excited electronic states alike.</abstract><cop>Washington</cop><pub>American Chemical Society</pub><doi>10.1021/acs.jctc.2c00746</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3665-587X</orcidid><orcidid>https://orcid.org/0000-0002-8757-1396</orcidid><orcidid>https://orcid.org/0000-0002-2131-7328</orcidid><orcidid>https://orcid.org/0000-0002-0322-4291</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-9618 |
ispartof | Journal of chemical theory and computation, 2022-10, Vol.18 (10), p.6240-6250 |
issn | 1549-9618 1549-9626 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03790799v1 |
source | ACS Publications |
subjects | Absorption spectroscopy Chemical Sciences Chlorine Density functional theory Electron states Excitation or physical chemistry Relativistic effects Spectra Spectroscopy and Excited States Spectrum analysis Theoretical and Thymine Time dependence X ray absorption |
title | Mixed-Reference Spin-Flip Time-Dependent Density Functional Theory for Accurate X‑ray Absorption Spectroscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T08%3A55%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mixed-Reference%20Spin-Flip%20Time-Dependent%20Density%20Functional%20Theory%20for%20Accurate%20X%E2%80%91ray%20Absorption%20Spectroscopy&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Park,%20Woojin&rft.date=2022-10-11&rft.volume=18&rft.issue=10&rft.spage=6240&rft.epage=6250&rft.pages=6240-6250&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/acs.jctc.2c00746&rft_dat=%3Cproquest_hal_p%3E2724310947%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2724310947&rft_id=info:pmid/&rfr_iscdi=true |