Mixed-Reference Spin-Flip Time-Dependent Density Functional Theory for Accurate X‑ray Absorption Spectroscopy

It is demonstrated that the challenging core-hole particle (CHP) orbital relaxation for core electron spectra can be readily achieved by the mixed-reference spin-flip (MRSF)–time-dependent density functional theory (TDDFT). With the additional scalar relativistic effects on K-edge excitation energie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical theory and computation 2022-10, Vol.18 (10), p.6240-6250
Hauptverfasser: Park, Woojin, Alías-Rodríguez, Marc, Cho, Daeheum, Lee, Seunghoon, Huix-Rotllant, Miquel, Choi, Cheol Ho
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6250
container_issue 10
container_start_page 6240
container_title Journal of chemical theory and computation
container_volume 18
creator Park, Woojin
Alías-Rodríguez, Marc
Cho, Daeheum
Lee, Seunghoon
Huix-Rotllant, Miquel
Choi, Cheol Ho
description It is demonstrated that the challenging core-hole particle (CHP) orbital relaxation for core electron spectra can be readily achieved by the mixed-reference spin-flip (MRSF)–time-dependent density functional theory (TDDFT). With the additional scalar relativistic effects on K-edge excitation energies of 24 second- and 17 third-row molecules, the particular ΔCHP–MRSF­(R) exhibited near perfect predictions with RMSE ∼0.5 eV, featuring a median value of 0.3 and an interquartile range of 0.4. Overall, the CHP effect is 2–4 times stronger than relativistic ones, contributing more than 20 eV in the cases of sulfur and chlorine third-row atoms. Such high precision allows to explain the splitting and spectral shapes of O, N, and C atom K-edges in the ground state of thymine with atom as well as orbital specific accuracy. The same protocol with a double hole particle relaxation also produced remarkably accurate K-edge spectra of core to valence hole excitation energies from the first (n O8π*) and second (ππ*) excited states of thymine, confirming the assignment of 1s → n excitation for the experimentally observed 526.4 eV peak. Regarding both accuracy and practicality, therefore, MRSF–TDDFT provides a promising protocol for core electron spectra of both ground and excited electronic states alike.
doi_str_mv 10.1021/acs.jctc.2c00746
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03790799v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2724310947</sourcerecordid><originalsourceid>FETCH-LOGICAL-a417t-99c49ec727a7c9d71de0b9f048dc567257d3d35d102d723f40e239b9f14626063</originalsourceid><addsrcrecordid>eNp1kU1L7DAYhYso-Ll3GXCjYMd8TTNZDupchRFBR3AXYvIWM3SamrRid_6F-xfvL7mpoy4EVwl5n3N4T06WHRI8IpiSM23iaGlaM6IGY8GLjWyHjLnMZUGLze87mWxnuzEuMWaMU7aT-Rv3Bja_gxIC1AbQfePqfFa5Bi3cCvILaKC2ULfoAuro2h7Nutq0zte6Qotn8KFHpQ9oakwXdAvo8d_736B7NH2KPjQDmCzBtMFH45t-P9sqdRXh4PPcyx5ml4vzq3x---f6fDrPNSeizaU0XIIRVGhhpBXEAn6SJeYTa8aFoGNhmWVjm6JbQVnJMVAmE0F4yosLtpedrH2fdaWa4FY69Mprp66mczW8YSYkFlK-ksQer9km-JcOYqtWLhqoKl2D76KigkwKxiTFCT36gS59F9JfDBTljGDJRaLwmjIpdQxQfm9AsBraUqktNbSlPttKktO15GPy5fkr_h9hQJhr</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2724310947</pqid></control><display><type>article</type><title>Mixed-Reference Spin-Flip Time-Dependent Density Functional Theory for Accurate X‑ray Absorption Spectroscopy</title><source>ACS Publications</source><creator>Park, Woojin ; Alías-Rodríguez, Marc ; Cho, Daeheum ; Lee, Seunghoon ; Huix-Rotllant, Miquel ; Choi, Cheol Ho</creator><creatorcontrib>Park, Woojin ; Alías-Rodríguez, Marc ; Cho, Daeheum ; Lee, Seunghoon ; Huix-Rotllant, Miquel ; Choi, Cheol Ho</creatorcontrib><description>It is demonstrated that the challenging core-hole particle (CHP) orbital relaxation for core electron spectra can be readily achieved by the mixed-reference spin-flip (MRSF)–time-dependent density functional theory (TDDFT). With the additional scalar relativistic effects on K-edge excitation energies of 24 second- and 17 third-row molecules, the particular ΔCHP–MRSF­(R) exhibited near perfect predictions with RMSE ∼0.5 eV, featuring a median value of 0.3 and an interquartile range of 0.4. Overall, the CHP effect is 2–4 times stronger than relativistic ones, contributing more than 20 eV in the cases of sulfur and chlorine third-row atoms. Such high precision allows to explain the splitting and spectral shapes of O, N, and C atom K-edges in the ground state of thymine with atom as well as orbital specific accuracy. The same protocol with a double hole particle relaxation also produced remarkably accurate K-edge spectra of core to valence hole excitation energies from the first (n O8π*) and second (ππ*) excited states of thymine, confirming the assignment of 1s → n excitation for the experimentally observed 526.4 eV peak. Regarding both accuracy and practicality, therefore, MRSF–TDDFT provides a promising protocol for core electron spectra of both ground and excited electronic states alike.</description><identifier>ISSN: 1549-9618</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/acs.jctc.2c00746</identifier><language>eng</language><publisher>Washington: American Chemical Society</publisher><subject>Absorption spectroscopy ; Chemical Sciences ; Chlorine ; Density functional theory ; Electron states ; Excitation ; or physical chemistry ; Relativistic effects ; Spectra ; Spectroscopy and Excited States ; Spectrum analysis ; Theoretical and ; Thymine ; Time dependence ; X ray absorption</subject><ispartof>Journal of chemical theory and computation, 2022-10, Vol.18 (10), p.6240-6250</ispartof><rights>2022 American Chemical Society</rights><rights>Copyright American Chemical Society Oct 11, 2022</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a417t-99c49ec727a7c9d71de0b9f048dc567257d3d35d102d723f40e239b9f14626063</citedby><cites>FETCH-LOGICAL-a417t-99c49ec727a7c9d71de0b9f048dc567257d3d35d102d723f40e239b9f14626063</cites><orcidid>0000-0003-3665-587X ; 0000-0002-8757-1396 ; 0000-0002-2131-7328 ; 0000-0002-0322-4291</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jctc.2c00746$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jctc.2c00746$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03790799$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Park, Woojin</creatorcontrib><creatorcontrib>Alías-Rodríguez, Marc</creatorcontrib><creatorcontrib>Cho, Daeheum</creatorcontrib><creatorcontrib>Lee, Seunghoon</creatorcontrib><creatorcontrib>Huix-Rotllant, Miquel</creatorcontrib><creatorcontrib>Choi, Cheol Ho</creatorcontrib><title>Mixed-Reference Spin-Flip Time-Dependent Density Functional Theory for Accurate X‑ray Absorption Spectroscopy</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>It is demonstrated that the challenging core-hole particle (CHP) orbital relaxation for core electron spectra can be readily achieved by the mixed-reference spin-flip (MRSF)–time-dependent density functional theory (TDDFT). With the additional scalar relativistic effects on K-edge excitation energies of 24 second- and 17 third-row molecules, the particular ΔCHP–MRSF­(R) exhibited near perfect predictions with RMSE ∼0.5 eV, featuring a median value of 0.3 and an interquartile range of 0.4. Overall, the CHP effect is 2–4 times stronger than relativistic ones, contributing more than 20 eV in the cases of sulfur and chlorine third-row atoms. Such high precision allows to explain the splitting and spectral shapes of O, N, and C atom K-edges in the ground state of thymine with atom as well as orbital specific accuracy. The same protocol with a double hole particle relaxation also produced remarkably accurate K-edge spectra of core to valence hole excitation energies from the first (n O8π*) and second (ππ*) excited states of thymine, confirming the assignment of 1s → n excitation for the experimentally observed 526.4 eV peak. Regarding both accuracy and practicality, therefore, MRSF–TDDFT provides a promising protocol for core electron spectra of both ground and excited electronic states alike.</description><subject>Absorption spectroscopy</subject><subject>Chemical Sciences</subject><subject>Chlorine</subject><subject>Density functional theory</subject><subject>Electron states</subject><subject>Excitation</subject><subject>or physical chemistry</subject><subject>Relativistic effects</subject><subject>Spectra</subject><subject>Spectroscopy and Excited States</subject><subject>Spectrum analysis</subject><subject>Theoretical and</subject><subject>Thymine</subject><subject>Time dependence</subject><subject>X ray absorption</subject><issn>1549-9618</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kU1L7DAYhYso-Ll3GXCjYMd8TTNZDupchRFBR3AXYvIWM3SamrRid_6F-xfvL7mpoy4EVwl5n3N4T06WHRI8IpiSM23iaGlaM6IGY8GLjWyHjLnMZUGLze87mWxnuzEuMWaMU7aT-Rv3Bja_gxIC1AbQfePqfFa5Bi3cCvILaKC2ULfoAuro2h7Nutq0zte6Qotn8KFHpQ9oakwXdAvo8d_736B7NH2KPjQDmCzBtMFH45t-P9sqdRXh4PPcyx5ml4vzq3x---f6fDrPNSeizaU0XIIRVGhhpBXEAn6SJeYTa8aFoGNhmWVjm6JbQVnJMVAmE0F4yosLtpedrH2fdaWa4FY69Mprp66mczW8YSYkFlK-ksQer9km-JcOYqtWLhqoKl2D76KigkwKxiTFCT36gS59F9JfDBTljGDJRaLwmjIpdQxQfm9AsBraUqktNbSlPttKktO15GPy5fkr_h9hQJhr</recordid><startdate>20221011</startdate><enddate>20221011</enddate><creator>Park, Woojin</creator><creator>Alías-Rodríguez, Marc</creator><creator>Cho, Daeheum</creator><creator>Lee, Seunghoon</creator><creator>Huix-Rotllant, Miquel</creator><creator>Choi, Cheol Ho</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-3665-587X</orcidid><orcidid>https://orcid.org/0000-0002-8757-1396</orcidid><orcidid>https://orcid.org/0000-0002-2131-7328</orcidid><orcidid>https://orcid.org/0000-0002-0322-4291</orcidid></search><sort><creationdate>20221011</creationdate><title>Mixed-Reference Spin-Flip Time-Dependent Density Functional Theory for Accurate X‑ray Absorption Spectroscopy</title><author>Park, Woojin ; Alías-Rodríguez, Marc ; Cho, Daeheum ; Lee, Seunghoon ; Huix-Rotllant, Miquel ; Choi, Cheol Ho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a417t-99c49ec727a7c9d71de0b9f048dc567257d3d35d102d723f40e239b9f14626063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Absorption spectroscopy</topic><topic>Chemical Sciences</topic><topic>Chlorine</topic><topic>Density functional theory</topic><topic>Electron states</topic><topic>Excitation</topic><topic>or physical chemistry</topic><topic>Relativistic effects</topic><topic>Spectra</topic><topic>Spectroscopy and Excited States</topic><topic>Spectrum analysis</topic><topic>Theoretical and</topic><topic>Thymine</topic><topic>Time dependence</topic><topic>X ray absorption</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Woojin</creatorcontrib><creatorcontrib>Alías-Rodríguez, Marc</creatorcontrib><creatorcontrib>Cho, Daeheum</creatorcontrib><creatorcontrib>Lee, Seunghoon</creatorcontrib><creatorcontrib>Huix-Rotllant, Miquel</creatorcontrib><creatorcontrib>Choi, Cheol Ho</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Woojin</au><au>Alías-Rodríguez, Marc</au><au>Cho, Daeheum</au><au>Lee, Seunghoon</au><au>Huix-Rotllant, Miquel</au><au>Choi, Cheol Ho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mixed-Reference Spin-Flip Time-Dependent Density Functional Theory for Accurate X‑ray Absorption Spectroscopy</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2022-10-11</date><risdate>2022</risdate><volume>18</volume><issue>10</issue><spage>6240</spage><epage>6250</epage><pages>6240-6250</pages><issn>1549-9618</issn><eissn>1549-9626</eissn><abstract>It is demonstrated that the challenging core-hole particle (CHP) orbital relaxation for core electron spectra can be readily achieved by the mixed-reference spin-flip (MRSF)–time-dependent density functional theory (TDDFT). With the additional scalar relativistic effects on K-edge excitation energies of 24 second- and 17 third-row molecules, the particular ΔCHP–MRSF­(R) exhibited near perfect predictions with RMSE ∼0.5 eV, featuring a median value of 0.3 and an interquartile range of 0.4. Overall, the CHP effect is 2–4 times stronger than relativistic ones, contributing more than 20 eV in the cases of sulfur and chlorine third-row atoms. Such high precision allows to explain the splitting and spectral shapes of O, N, and C atom K-edges in the ground state of thymine with atom as well as orbital specific accuracy. The same protocol with a double hole particle relaxation also produced remarkably accurate K-edge spectra of core to valence hole excitation energies from the first (n O8π*) and second (ππ*) excited states of thymine, confirming the assignment of 1s → n excitation for the experimentally observed 526.4 eV peak. Regarding both accuracy and practicality, therefore, MRSF–TDDFT provides a promising protocol for core electron spectra of both ground and excited electronic states alike.</abstract><cop>Washington</cop><pub>American Chemical Society</pub><doi>10.1021/acs.jctc.2c00746</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3665-587X</orcidid><orcidid>https://orcid.org/0000-0002-8757-1396</orcidid><orcidid>https://orcid.org/0000-0002-2131-7328</orcidid><orcidid>https://orcid.org/0000-0002-0322-4291</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1549-9618
ispartof Journal of chemical theory and computation, 2022-10, Vol.18 (10), p.6240-6250
issn 1549-9618
1549-9626
language eng
recordid cdi_hal_primary_oai_HAL_hal_03790799v1
source ACS Publications
subjects Absorption spectroscopy
Chemical Sciences
Chlorine
Density functional theory
Electron states
Excitation
or physical chemistry
Relativistic effects
Spectra
Spectroscopy and Excited States
Spectrum analysis
Theoretical and
Thymine
Time dependence
X ray absorption
title Mixed-Reference Spin-Flip Time-Dependent Density Functional Theory for Accurate X‑ray Absorption Spectroscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T08%3A55%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mixed-Reference%20Spin-Flip%20Time-Dependent%20Density%20Functional%20Theory%20for%20Accurate%20X%E2%80%91ray%20Absorption%20Spectroscopy&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Park,%20Woojin&rft.date=2022-10-11&rft.volume=18&rft.issue=10&rft.spage=6240&rft.epage=6250&rft.pages=6240-6250&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/acs.jctc.2c00746&rft_dat=%3Cproquest_hal_p%3E2724310947%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2724310947&rft_id=info:pmid/&rfr_iscdi=true