Constraints on the exosphere of CoRoT-7b

Context. The small radius and high density of CoRoT-7b implies that this transiting planet belongs to a different species than all transiting planets previously found. Current models suggest that this is the first transiting rocky planet found outside the solar system. Given that the planet orbits a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astronomy and astrophysics (Berlin) 2011-01, Vol.525, p.A24
Hauptverfasser: Guenther, E. W., Cabrera, J., Erikson, A., Fridlund, M., Lammer, H., Mura, A., Rauer, H., Schneider, J., Tulej, M., von Paris, Ph, Wurz, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page A24
container_title Astronomy and astrophysics (Berlin)
container_volume 525
creator Guenther, E. W.
Cabrera, J.
Erikson, A.
Fridlund, M.
Lammer, H.
Mura, A.
Rauer, H.
Schneider, J.
Tulej, M.
von Paris, Ph
Wurz, P.
description Context. The small radius and high density of CoRoT-7b implies that this transiting planet belongs to a different species than all transiting planets previously found. Current models suggest that this is the first transiting rocky planet found outside the solar system. Given that the planet orbits a solar-like star at a distance of only 4.5 R∗, it is expected that material released from its surface may then form an exosphere. Aims. We constrain the properties of the exosphere by observing the planet in- and out-of-transit. Detecting the exosphere of CoRoT-7b would for the first time allow us to study the material originating in the surface of a rocky extrasolar planet. We scan the entire optical spectrum for any lines originating from the planet, focusing particularly on spectral lines such as those detected in Mercury and Io in our solar system. Methods. Since lines originating in the exosphere are expected to be narrow, we observed CoRoT-7b at high resolution with UVES on the VLT. By subtracting the two spectra from each other, we search for emission and absorption lines originating in the exosphere of CoRoT-7b. Results. In the first step, we focus on Ca I, Ca II, and Na, because these lines have been detected in Mercury. Since the signal-to-noise ratio (S/N) of the spectra is as high as 300, we derive firm upper limits for the flux-range between 1.6 × 10-18 and 3.2 × 10-18 W m-2. For CaO, we find an upper limit of 10-17 W m-2. We also search for emission lines originating in the plasma torus fed by volcanic activity and derive upper limits for these lines. In the whole spectrum we finally try to identify other lines originating in the planet. Conclusions. Except for CaO, the upper limits derived correspond to 2−6 × 10-6 L∗, demonstrating the capability of UVES to detect very weak lines. Our observations certainly exclude the extreme interpretations of data for CoRoT-7b, such as an exosphere that emits 2000 times as brightly as Mercury.
doi_str_mv 10.1051/0004-6361/201014868
format Article
fullrecord <record><control><sourceid>istex_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03786230v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_80W_PJZCSP32_Z</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-6203ee1216e10af339afd7df54dd223b9afe57e424d31ff528b000f862ee4fff3</originalsourceid><addsrcrecordid>eNo9kNFLwzAQxoMoOKd_gS99EfQhLpdLk-5xFOeUgUMnwl5C1iasOpuRFJn_vS2VPh139_uO-z5CroHdA0thwhgTVKKECWfAQGQyOyEjEMgpU0KektFAnJOLGD_blkOGI3Kb-zo2wVR1ExNfJ83OJvbo42Fng028S3L_6tdUbS_JmTP7aK_-65i8zx_W-YIuXx6f8tmSFshlQyVnaC1wkBaYcYhT40pVulSUJee4bVubKiu4KBGcS3m2bX9xmeTWCuccjsldf3dn9voQqm8TfrU3lV7MlrqbMVQtjewHWhZ7tgg-xmDdIACmu2B0Z1t3tvUQTKu66VUHEwuzd8HURRUHKcdpKhE7jvZcFRt7HPYmfGmpUKU6Yx969bzJ31bI9Qb_AF7yb04</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Constraints on the exosphere of CoRoT-7b</title><source>Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX</source><source>EDP Sciences</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Guenther, E. W. ; Cabrera, J. ; Erikson, A. ; Fridlund, M. ; Lammer, H. ; Mura, A. ; Rauer, H. ; Schneider, J. ; Tulej, M. ; von Paris, Ph ; Wurz, P.</creator><creatorcontrib>Guenther, E. W. ; Cabrera, J. ; Erikson, A. ; Fridlund, M. ; Lammer, H. ; Mura, A. ; Rauer, H. ; Schneider, J. ; Tulej, M. ; von Paris, Ph ; Wurz, P.</creatorcontrib><description>Context. The small radius and high density of CoRoT-7b implies that this transiting planet belongs to a different species than all transiting planets previously found. Current models suggest that this is the first transiting rocky planet found outside the solar system. Given that the planet orbits a solar-like star at a distance of only 4.5 R∗, it is expected that material released from its surface may then form an exosphere. Aims. We constrain the properties of the exosphere by observing the planet in- and out-of-transit. Detecting the exosphere of CoRoT-7b would for the first time allow us to study the material originating in the surface of a rocky extrasolar planet. We scan the entire optical spectrum for any lines originating from the planet, focusing particularly on spectral lines such as those detected in Mercury and Io in our solar system. Methods. Since lines originating in the exosphere are expected to be narrow, we observed CoRoT-7b at high resolution with UVES on the VLT. By subtracting the two spectra from each other, we search for emission and absorption lines originating in the exosphere of CoRoT-7b. Results. In the first step, we focus on Ca I, Ca II, and Na, because these lines have been detected in Mercury. Since the signal-to-noise ratio (S/N) of the spectra is as high as 300, we derive firm upper limits for the flux-range between 1.6 × 10-18 and 3.2 × 10-18 W m-2. For CaO, we find an upper limit of 10-17 W m-2. We also search for emission lines originating in the plasma torus fed by volcanic activity and derive upper limits for these lines. In the whole spectrum we finally try to identify other lines originating in the planet. Conclusions. Except for CaO, the upper limits derived correspond to 2−6 × 10-6 L∗, demonstrating the capability of UVES to detect very weak lines. Our observations certainly exclude the extreme interpretations of data for CoRoT-7b, such as an exosphere that emits 2000 times as brightly as Mercury.</description><identifier>ISSN: 0004-6361</identifier><identifier>EISSN: 1432-0746</identifier><identifier>EISSN: 1432-0756</identifier><identifier>DOI: 10.1051/0004-6361/201014868</identifier><identifier>CODEN: AAEJAF</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>Astronomy ; Astrophysics ; Earth, ocean, space ; Exact sciences and technology ; Physics ; planetary systems ; planets and satellites: atmospheres ; planets and satellites: individual: CoRoT-7b ; techniques: spectroscopic</subject><ispartof>Astronomy and astrophysics (Berlin), 2011-01, Vol.525, p.A24</ispartof><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-6203ee1216e10af339afd7df54dd223b9afe57e424d31ff528b000f862ee4fff3</citedby><cites>FETCH-LOGICAL-c326t-6203ee1216e10af339afd7df54dd223b9afe57e424d31ff528b000f862ee4fff3</cites><orcidid>0000-0001-9625-9962</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,3714,4010,27900,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23956338$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03786230$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Guenther, E. W.</creatorcontrib><creatorcontrib>Cabrera, J.</creatorcontrib><creatorcontrib>Erikson, A.</creatorcontrib><creatorcontrib>Fridlund, M.</creatorcontrib><creatorcontrib>Lammer, H.</creatorcontrib><creatorcontrib>Mura, A.</creatorcontrib><creatorcontrib>Rauer, H.</creatorcontrib><creatorcontrib>Schneider, J.</creatorcontrib><creatorcontrib>Tulej, M.</creatorcontrib><creatorcontrib>von Paris, Ph</creatorcontrib><creatorcontrib>Wurz, P.</creatorcontrib><title>Constraints on the exosphere of CoRoT-7b</title><title>Astronomy and astrophysics (Berlin)</title><description>Context. The small radius and high density of CoRoT-7b implies that this transiting planet belongs to a different species than all transiting planets previously found. Current models suggest that this is the first transiting rocky planet found outside the solar system. Given that the planet orbits a solar-like star at a distance of only 4.5 R∗, it is expected that material released from its surface may then form an exosphere. Aims. We constrain the properties of the exosphere by observing the planet in- and out-of-transit. Detecting the exosphere of CoRoT-7b would for the first time allow us to study the material originating in the surface of a rocky extrasolar planet. We scan the entire optical spectrum for any lines originating from the planet, focusing particularly on spectral lines such as those detected in Mercury and Io in our solar system. Methods. Since lines originating in the exosphere are expected to be narrow, we observed CoRoT-7b at high resolution with UVES on the VLT. By subtracting the two spectra from each other, we search for emission and absorption lines originating in the exosphere of CoRoT-7b. Results. In the first step, we focus on Ca I, Ca II, and Na, because these lines have been detected in Mercury. Since the signal-to-noise ratio (S/N) of the spectra is as high as 300, we derive firm upper limits for the flux-range between 1.6 × 10-18 and 3.2 × 10-18 W m-2. For CaO, we find an upper limit of 10-17 W m-2. We also search for emission lines originating in the plasma torus fed by volcanic activity and derive upper limits for these lines. In the whole spectrum we finally try to identify other lines originating in the planet. Conclusions. Except for CaO, the upper limits derived correspond to 2−6 × 10-6 L∗, demonstrating the capability of UVES to detect very weak lines. Our observations certainly exclude the extreme interpretations of data for CoRoT-7b, such as an exosphere that emits 2000 times as brightly as Mercury.</description><subject>Astronomy</subject><subject>Astrophysics</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Physics</subject><subject>planetary systems</subject><subject>planets and satellites: atmospheres</subject><subject>planets and satellites: individual: CoRoT-7b</subject><subject>techniques: spectroscopic</subject><issn>0004-6361</issn><issn>1432-0746</issn><issn>1432-0756</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNo9kNFLwzAQxoMoOKd_gS99EfQhLpdLk-5xFOeUgUMnwl5C1iasOpuRFJn_vS2VPh139_uO-z5CroHdA0thwhgTVKKECWfAQGQyOyEjEMgpU0KektFAnJOLGD_blkOGI3Kb-zo2wVR1ExNfJ83OJvbo42Fng028S3L_6tdUbS_JmTP7aK_-65i8zx_W-YIuXx6f8tmSFshlQyVnaC1wkBaYcYhT40pVulSUJee4bVubKiu4KBGcS3m2bX9xmeTWCuccjsldf3dn9voQqm8TfrU3lV7MlrqbMVQtjewHWhZ7tgg-xmDdIACmu2B0Z1t3tvUQTKu66VUHEwuzd8HURRUHKcdpKhE7jvZcFRt7HPYmfGmpUKU6Yx969bzJ31bI9Qb_AF7yb04</recordid><startdate>201101</startdate><enddate>201101</enddate><creator>Guenther, E. W.</creator><creator>Cabrera, J.</creator><creator>Erikson, A.</creator><creator>Fridlund, M.</creator><creator>Lammer, H.</creator><creator>Mura, A.</creator><creator>Rauer, H.</creator><creator>Schneider, J.</creator><creator>Tulej, M.</creator><creator>von Paris, Ph</creator><creator>Wurz, P.</creator><general>EDP Sciences</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-9625-9962</orcidid></search><sort><creationdate>201101</creationdate><title>Constraints on the exosphere of CoRoT-7b</title><author>Guenther, E. W. ; Cabrera, J. ; Erikson, A. ; Fridlund, M. ; Lammer, H. ; Mura, A. ; Rauer, H. ; Schneider, J. ; Tulej, M. ; von Paris, Ph ; Wurz, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-6203ee1216e10af339afd7df54dd223b9afe57e424d31ff528b000f862ee4fff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Astronomy</topic><topic>Astrophysics</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Physics</topic><topic>planetary systems</topic><topic>planets and satellites: atmospheres</topic><topic>planets and satellites: individual: CoRoT-7b</topic><topic>techniques: spectroscopic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guenther, E. W.</creatorcontrib><creatorcontrib>Cabrera, J.</creatorcontrib><creatorcontrib>Erikson, A.</creatorcontrib><creatorcontrib>Fridlund, M.</creatorcontrib><creatorcontrib>Lammer, H.</creatorcontrib><creatorcontrib>Mura, A.</creatorcontrib><creatorcontrib>Rauer, H.</creatorcontrib><creatorcontrib>Schneider, J.</creatorcontrib><creatorcontrib>Tulej, M.</creatorcontrib><creatorcontrib>von Paris, Ph</creatorcontrib><creatorcontrib>Wurz, P.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Astronomy and astrophysics (Berlin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guenther, E. W.</au><au>Cabrera, J.</au><au>Erikson, A.</au><au>Fridlund, M.</au><au>Lammer, H.</au><au>Mura, A.</au><au>Rauer, H.</au><au>Schneider, J.</au><au>Tulej, M.</au><au>von Paris, Ph</au><au>Wurz, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constraints on the exosphere of CoRoT-7b</atitle><jtitle>Astronomy and astrophysics (Berlin)</jtitle><date>2011-01</date><risdate>2011</risdate><volume>525</volume><spage>A24</spage><pages>A24-</pages><issn>0004-6361</issn><eissn>1432-0746</eissn><eissn>1432-0756</eissn><coden>AAEJAF</coden><abstract>Context. The small radius and high density of CoRoT-7b implies that this transiting planet belongs to a different species than all transiting planets previously found. Current models suggest that this is the first transiting rocky planet found outside the solar system. Given that the planet orbits a solar-like star at a distance of only 4.5 R∗, it is expected that material released from its surface may then form an exosphere. Aims. We constrain the properties of the exosphere by observing the planet in- and out-of-transit. Detecting the exosphere of CoRoT-7b would for the first time allow us to study the material originating in the surface of a rocky extrasolar planet. We scan the entire optical spectrum for any lines originating from the planet, focusing particularly on spectral lines such as those detected in Mercury and Io in our solar system. Methods. Since lines originating in the exosphere are expected to be narrow, we observed CoRoT-7b at high resolution with UVES on the VLT. By subtracting the two spectra from each other, we search for emission and absorption lines originating in the exosphere of CoRoT-7b. Results. In the first step, we focus on Ca I, Ca II, and Na, because these lines have been detected in Mercury. Since the signal-to-noise ratio (S/N) of the spectra is as high as 300, we derive firm upper limits for the flux-range between 1.6 × 10-18 and 3.2 × 10-18 W m-2. For CaO, we find an upper limit of 10-17 W m-2. We also search for emission lines originating in the plasma torus fed by volcanic activity and derive upper limits for these lines. In the whole spectrum we finally try to identify other lines originating in the planet. Conclusions. Except for CaO, the upper limits derived correspond to 2−6 × 10-6 L∗, demonstrating the capability of UVES to detect very weak lines. Our observations certainly exclude the extreme interpretations of data for CoRoT-7b, such as an exosphere that emits 2000 times as brightly as Mercury.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/0004-6361/201014868</doi><orcidid>https://orcid.org/0000-0001-9625-9962</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-6361
ispartof Astronomy and astrophysics (Berlin), 2011-01, Vol.525, p.A24
issn 0004-6361
1432-0746
1432-0756
language eng
recordid cdi_hal_primary_oai_HAL_hal_03786230v1
source Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX; EDP Sciences; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Astronomy
Astrophysics
Earth, ocean, space
Exact sciences and technology
Physics
planetary systems
planets and satellites: atmospheres
planets and satellites: individual: CoRoT-7b
techniques: spectroscopic
title Constraints on the exosphere of CoRoT-7b
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T16%3A47%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constraints%20on%20the%20exosphere%20of%20CoRoT-7b&rft.jtitle=Astronomy%20and%20astrophysics%20(Berlin)&rft.au=Guenther,%20E.%20W.&rft.date=2011-01&rft.volume=525&rft.spage=A24&rft.pages=A24-&rft.issn=0004-6361&rft.eissn=1432-0746&rft.coden=AAEJAF&rft_id=info:doi/10.1051/0004-6361/201014868&rft_dat=%3Cistex_hal_p%3Eark_67375_80W_PJZCSP32_Z%3C/istex_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true