A collaborative network of digital twins for anomaly detection applications of complex systems. Snitch Digital Twin concept

This paper proposes a novel anomaly detection methodology for industrial systems based on Digital Twin (DT) ecosystems. In addition to DTs, conceived as a digital representation of a physical entity, this paper proposes a new concept of DT focused on modeling connections between physical behaviors....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers in industry 2023-01, Vol.144, p.103767, Article 103767
Hauptverfasser: Calvo-Bascones, Pablo, Voisin, Alexandre, Do, Phuc, Sanz-Bobi, Miguel A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 103767
container_title Computers in industry
container_volume 144
creator Calvo-Bascones, Pablo
Voisin, Alexandre
Do, Phuc
Sanz-Bobi, Miguel A.
description This paper proposes a novel anomaly detection methodology for industrial systems based on Digital Twin (DT) ecosystems. In addition to DTs, conceived as a digital representation of a physical entity, this paper proposes a new concept of DT focused on modeling connections between physical behaviors. This new DT concept is called Snitch Digital Twin (SDT). The scope of the SDT is the study of variations between behaviors and support the detection of anomalies between them. The behavior of each physical entity is characterized by three spatiotemporal features computed from each collected measurement. Behavioral anomalies are identified and quantified through modular patterns based on quantile regression and behavioral indexes. Finally, the robustness of the proposed methodology is assessed by comparing it with the other two commonly used algorithms based on Kernel Principal Component Analysis (KPCA) and One-Class Support Vector Machines (OCSVM) in a case study application. The case study is based on the diagnosis of the cooling system of a power-generator diesel engine. The results obtained prove the advantages and goodness of this novel methodology compared to the two traditional algorithms. •This study presents the concept of Snitch Digital Twin applied to anomaly detection.•The proposed methodology fulfills the requirements of Digital Twin Ecosystems.•This methodology improves the identification of contextual and collective behaviors.•This methodology is compared with other two known approaches based on KPCA and OCSVM.•This study includes a real application of a Power Generator Diesel Engine.
doi_str_mv 10.1016/j.compind.2022.103767
format Article
fullrecord <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03784783v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166361522001634</els_id><sourcerecordid>S0166361522001634</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-f30b1ad69a3a0b0c7e39b484de509b6f7a008354f21e367e465473e0eeeab0343</originalsourceid><addsrcrecordid>eNqFkM1OwzAQhC0EEqXwCEi-ckix48ROTqgqP0WqxIFythxnQ13SOLKtloqXx1EqruxlV6uZ0e6H0C0lM0oov9_OtN31pqtnKUnTuGOCizM0oYVIE07L7BxNoo4njNP8El15vyWxhOAT9DPH2ratqqxTwewBdxAO1n1h2-DafJqgWhwOpvO4sQ6rzu5Ue8Q1BNDB2A6rvm-NVsPsB89wSQvf2B99gJ2f4ffOBL3Bj6esdcyKok5DH67RRaNaDzenPkUfz0_rxTJZvb28LuarRLOShKRhpKKq5qViilREC2BllRVZDTkpK94IRUjB8qxJKTAuION5JhgQAFAVYRmborsxd6Na2TuzU-4orTJyOV_JYReBFZko2J5GbT5qtbPeO2j-DJTIgbbcyhNtOdCWI-3oexh9EB_ZG3DSawPxzdq4iErW1vyT8AsrSY0g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A collaborative network of digital twins for anomaly detection applications of complex systems. Snitch Digital Twin concept</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Calvo-Bascones, Pablo ; Voisin, Alexandre ; Do, Phuc ; Sanz-Bobi, Miguel A.</creator><creatorcontrib>Calvo-Bascones, Pablo ; Voisin, Alexandre ; Do, Phuc ; Sanz-Bobi, Miguel A.</creatorcontrib><description>This paper proposes a novel anomaly detection methodology for industrial systems based on Digital Twin (DT) ecosystems. In addition to DTs, conceived as a digital representation of a physical entity, this paper proposes a new concept of DT focused on modeling connections between physical behaviors. This new DT concept is called Snitch Digital Twin (SDT). The scope of the SDT is the study of variations between behaviors and support the detection of anomalies between them. The behavior of each physical entity is characterized by three spatiotemporal features computed from each collected measurement. Behavioral anomalies are identified and quantified through modular patterns based on quantile regression and behavioral indexes. Finally, the robustness of the proposed methodology is assessed by comparing it with the other two commonly used algorithms based on Kernel Principal Component Analysis (KPCA) and One-Class Support Vector Machines (OCSVM) in a case study application. The case study is based on the diagnosis of the cooling system of a power-generator diesel engine. The results obtained prove the advantages and goodness of this novel methodology compared to the two traditional algorithms. •This study presents the concept of Snitch Digital Twin applied to anomaly detection.•The proposed methodology fulfills the requirements of Digital Twin Ecosystems.•This methodology improves the identification of contextual and collective behaviors.•This methodology is compared with other two known approaches based on KPCA and OCSVM.•This study includes a real application of a Power Generator Diesel Engine.</description><identifier>ISSN: 0166-3615</identifier><identifier>EISSN: 1872-6194</identifier><identifier>DOI: 10.1016/j.compind.2022.103767</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Anomaly detection ; Automatic ; Behavior characterization ; Diesel generator ; Digital Twins ; Engineering Sciences ; Quantile regression</subject><ispartof>Computers in industry, 2023-01, Vol.144, p.103767, Article 103767</ispartof><rights>2022 The Author(s)</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-f30b1ad69a3a0b0c7e39b484de509b6f7a008354f21e367e465473e0eeeab0343</citedby><cites>FETCH-LOGICAL-c390t-f30b1ad69a3a0b0c7e39b484de509b6f7a008354f21e367e465473e0eeeab0343</cites><orcidid>0000-0001-8247-0337 ; 0000-0002-4637-6826 ; 0000-0003-4113-5895</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compind.2022.103767$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03784783$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Calvo-Bascones, Pablo</creatorcontrib><creatorcontrib>Voisin, Alexandre</creatorcontrib><creatorcontrib>Do, Phuc</creatorcontrib><creatorcontrib>Sanz-Bobi, Miguel A.</creatorcontrib><title>A collaborative network of digital twins for anomaly detection applications of complex systems. Snitch Digital Twin concept</title><title>Computers in industry</title><description>This paper proposes a novel anomaly detection methodology for industrial systems based on Digital Twin (DT) ecosystems. In addition to DTs, conceived as a digital representation of a physical entity, this paper proposes a new concept of DT focused on modeling connections between physical behaviors. This new DT concept is called Snitch Digital Twin (SDT). The scope of the SDT is the study of variations between behaviors and support the detection of anomalies between them. The behavior of each physical entity is characterized by three spatiotemporal features computed from each collected measurement. Behavioral anomalies are identified and quantified through modular patterns based on quantile regression and behavioral indexes. Finally, the robustness of the proposed methodology is assessed by comparing it with the other two commonly used algorithms based on Kernel Principal Component Analysis (KPCA) and One-Class Support Vector Machines (OCSVM) in a case study application. The case study is based on the diagnosis of the cooling system of a power-generator diesel engine. The results obtained prove the advantages and goodness of this novel methodology compared to the two traditional algorithms. •This study presents the concept of Snitch Digital Twin applied to anomaly detection.•The proposed methodology fulfills the requirements of Digital Twin Ecosystems.•This methodology improves the identification of contextual and collective behaviors.•This methodology is compared with other two known approaches based on KPCA and OCSVM.•This study includes a real application of a Power Generator Diesel Engine.</description><subject>Anomaly detection</subject><subject>Automatic</subject><subject>Behavior characterization</subject><subject>Diesel generator</subject><subject>Digital Twins</subject><subject>Engineering Sciences</subject><subject>Quantile regression</subject><issn>0166-3615</issn><issn>1872-6194</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OwzAQhC0EEqXwCEi-ckix48ROTqgqP0WqxIFythxnQ13SOLKtloqXx1EqruxlV6uZ0e6H0C0lM0oov9_OtN31pqtnKUnTuGOCizM0oYVIE07L7BxNoo4njNP8El15vyWxhOAT9DPH2ratqqxTwewBdxAO1n1h2-DafJqgWhwOpvO4sQ6rzu5Ue8Q1BNDB2A6rvm-NVsPsB89wSQvf2B99gJ2f4ffOBL3Bj6esdcyKok5DH67RRaNaDzenPkUfz0_rxTJZvb28LuarRLOShKRhpKKq5qViilREC2BllRVZDTkpK94IRUjB8qxJKTAuION5JhgQAFAVYRmborsxd6Na2TuzU-4orTJyOV_JYReBFZko2J5GbT5qtbPeO2j-DJTIgbbcyhNtOdCWI-3oexh9EB_ZG3DSawPxzdq4iErW1vyT8AsrSY0g</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Calvo-Bascones, Pablo</creator><creator>Voisin, Alexandre</creator><creator>Do, Phuc</creator><creator>Sanz-Bobi, Miguel A.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-8247-0337</orcidid><orcidid>https://orcid.org/0000-0002-4637-6826</orcidid><orcidid>https://orcid.org/0000-0003-4113-5895</orcidid></search><sort><creationdate>202301</creationdate><title>A collaborative network of digital twins for anomaly detection applications of complex systems. Snitch Digital Twin concept</title><author>Calvo-Bascones, Pablo ; Voisin, Alexandre ; Do, Phuc ; Sanz-Bobi, Miguel A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-f30b1ad69a3a0b0c7e39b484de509b6f7a008354f21e367e465473e0eeeab0343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anomaly detection</topic><topic>Automatic</topic><topic>Behavior characterization</topic><topic>Diesel generator</topic><topic>Digital Twins</topic><topic>Engineering Sciences</topic><topic>Quantile regression</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Calvo-Bascones, Pablo</creatorcontrib><creatorcontrib>Voisin, Alexandre</creatorcontrib><creatorcontrib>Do, Phuc</creatorcontrib><creatorcontrib>Sanz-Bobi, Miguel A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Computers in industry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Calvo-Bascones, Pablo</au><au>Voisin, Alexandre</au><au>Do, Phuc</au><au>Sanz-Bobi, Miguel A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A collaborative network of digital twins for anomaly detection applications of complex systems. Snitch Digital Twin concept</atitle><jtitle>Computers in industry</jtitle><date>2023-01</date><risdate>2023</risdate><volume>144</volume><spage>103767</spage><pages>103767-</pages><artnum>103767</artnum><issn>0166-3615</issn><eissn>1872-6194</eissn><abstract>This paper proposes a novel anomaly detection methodology for industrial systems based on Digital Twin (DT) ecosystems. In addition to DTs, conceived as a digital representation of a physical entity, this paper proposes a new concept of DT focused on modeling connections between physical behaviors. This new DT concept is called Snitch Digital Twin (SDT). The scope of the SDT is the study of variations between behaviors and support the detection of anomalies between them. The behavior of each physical entity is characterized by three spatiotemporal features computed from each collected measurement. Behavioral anomalies are identified and quantified through modular patterns based on quantile regression and behavioral indexes. Finally, the robustness of the proposed methodology is assessed by comparing it with the other two commonly used algorithms based on Kernel Principal Component Analysis (KPCA) and One-Class Support Vector Machines (OCSVM) in a case study application. The case study is based on the diagnosis of the cooling system of a power-generator diesel engine. The results obtained prove the advantages and goodness of this novel methodology compared to the two traditional algorithms. •This study presents the concept of Snitch Digital Twin applied to anomaly detection.•The proposed methodology fulfills the requirements of Digital Twin Ecosystems.•This methodology improves the identification of contextual and collective behaviors.•This methodology is compared with other two known approaches based on KPCA and OCSVM.•This study includes a real application of a Power Generator Diesel Engine.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.compind.2022.103767</doi><orcidid>https://orcid.org/0000-0001-8247-0337</orcidid><orcidid>https://orcid.org/0000-0002-4637-6826</orcidid><orcidid>https://orcid.org/0000-0003-4113-5895</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0166-3615
ispartof Computers in industry, 2023-01, Vol.144, p.103767, Article 103767
issn 0166-3615
1872-6194
language eng
recordid cdi_hal_primary_oai_HAL_hal_03784783v1
source Elsevier ScienceDirect Journals Complete
subjects Anomaly detection
Automatic
Behavior characterization
Diesel generator
Digital Twins
Engineering Sciences
Quantile regression
title A collaborative network of digital twins for anomaly detection applications of complex systems. Snitch Digital Twin concept
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A23%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20collaborative%20network%20of%20digital%20twins%20for%20anomaly%20detection%20applications%20of%20complex%20systems.%20Snitch%20Digital%20Twin%20concept&rft.jtitle=Computers%20in%20industry&rft.au=Calvo-Bascones,%20Pablo&rft.date=2023-01&rft.volume=144&rft.spage=103767&rft.pages=103767-&rft.artnum=103767&rft.issn=0166-3615&rft.eissn=1872-6194&rft_id=info:doi/10.1016/j.compind.2022.103767&rft_dat=%3Celsevier_hal_p%3ES0166361522001634%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0166361522001634&rfr_iscdi=true