Mechanosynthezized Zn3V2O8 Mixed Oxide as Efficient Catalyst of Xylose Conversion to Glycolic Acid in Water

Different catalytic materials of mixed oxide of zinc and vanadium Zn 3 V 2 O 8 were synthesized using co-precipitation, combustion, alginate gelation and mechanosynthesis methods. The synthesized mixed oxide Zn 3 V 2 O 8 were characterized by several techniques including XRD, SEM, EDX, XPS and BET....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Catalysis letters 2023-07, Vol.153 (7), p.2210-2222
Hauptverfasser: Khallouk, Khadija, Solhy, Abderrahim, El khalfaouy, Redouan, Kherbeche, Abdelhak, Barakat, Abdellatif
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2222
container_issue 7
container_start_page 2210
container_title Catalysis letters
container_volume 153
creator Khallouk, Khadija
Solhy, Abderrahim
El khalfaouy, Redouan
Kherbeche, Abdelhak
Barakat, Abdellatif
description Different catalytic materials of mixed oxide of zinc and vanadium Zn 3 V 2 O 8 were synthesized using co-precipitation, combustion, alginate gelation and mechanosynthesis methods. The synthesized mixed oxide Zn 3 V 2 O 8 were characterized by several techniques including XRD, SEM, EDX, XPS and BET. Structural measurement revealed the influence of the synthesis method on the physical and catalytic proprieties of Zn 3 V 2 O 8 materials. Catalytic performance of Zn 3 V 2 O 8 has been studied by oxidation of xylose to organic acids in water at 150 °C for 1 h. Significantly, this is the first time that the Zn 3 V 2 O 8 nano-oxide was used as catalyst for xylose oxidation in water. Zn 3 V 2 O 8 can efficiently catalyze the synthesis of glycolic acid (70% selectivity and 60% yield) from xylose with excellent stability and reusability. The ability to regenerate the Zn 3 V 2 O 8 was also assessed by determining the change in the reaction indices in successive reaction–regeneration cycles. Graphical Abstract
doi_str_mv 10.1007/s10562-022-04151-8
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03778764v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2825511944</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-d77be311035cb295ec15dfd7c14806189cf4ce70cc68b2e7b3a117a85b8db4a53</originalsourceid><addsrcrecordid>eNp9kUtLxDAUhYsoOD7-gKuAKxfV3KSZpMth0BlhZDY-BjchTVMnWpMxqWL99UYrunNxuQ--c7hwsuwI8ClgzM8iYDYmOSapCmCQi61sBIyTXPBytZ1mDJBTTla72V6MjxjjkkM5yp6ujF4r52PvurX5sB-mRveO3pKlQFf2PW3Ld1sbpCI6bxqrrXEdmqpOtX3skG_Qqm99NGjq3ZsJ0XqHOo9mba99azWaaFsj69Cd6kw4yHYa1UZz-NP3s5uL8-vpPF8sZ5fTySLXlNEurzmvDAXAlOmKlMxoYHVTcw2FwGMQpW4KbTjWeiwqYnhFFQBXglWirgrF6H52MviuVSs3wT6r0EuvrJxPFvLrhinngo-LN0js8cBugn95NbGTj_41uPSeJIIwBlAWRaLIQOngYwym-bUFLL8CkEMAMgUgvwOQIonoIIoJdg8m_Fn_o_oErH-H-g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2825511944</pqid></control><display><type>article</type><title>Mechanosynthezized Zn3V2O8 Mixed Oxide as Efficient Catalyst of Xylose Conversion to Glycolic Acid in Water</title><source>SpringerLink Journals - AutoHoldings</source><creator>Khallouk, Khadija ; Solhy, Abderrahim ; El khalfaouy, Redouan ; Kherbeche, Abdelhak ; Barakat, Abdellatif</creator><creatorcontrib>Khallouk, Khadija ; Solhy, Abderrahim ; El khalfaouy, Redouan ; Kherbeche, Abdelhak ; Barakat, Abdellatif</creatorcontrib><description>Different catalytic materials of mixed oxide of zinc and vanadium Zn 3 V 2 O 8 were synthesized using co-precipitation, combustion, alginate gelation and mechanosynthesis methods. The synthesized mixed oxide Zn 3 V 2 O 8 were characterized by several techniques including XRD, SEM, EDX, XPS and BET. Structural measurement revealed the influence of the synthesis method on the physical and catalytic proprieties of Zn 3 V 2 O 8 materials. Catalytic performance of Zn 3 V 2 O 8 has been studied by oxidation of xylose to organic acids in water at 150 °C for 1 h. Significantly, this is the first time that the Zn 3 V 2 O 8 nano-oxide was used as catalyst for xylose oxidation in water. Zn 3 V 2 O 8 can efficiently catalyze the synthesis of glycolic acid (70% selectivity and 60% yield) from xylose with excellent stability and reusability. The ability to regenerate the Zn 3 V 2 O 8 was also assessed by determining the change in the reaction indices in successive reaction–regeneration cycles. Graphical Abstract</description><identifier>ISSN: 1011-372X</identifier><identifier>EISSN: 1572-879X</identifier><identifier>DOI: 10.1007/s10562-022-04151-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Acids ; Alginates ; Aqueous solutions ; Biomass ; Carbohydrates ; Catalysis ; Catalysts ; Catalytic converters ; Catalytic oxidation ; Chemical industry ; Chemical synthesis ; Chemistry ; Chemistry and Materials Science ; Energy consumption ; Food engineering ; Glycolic acid ; Hydrogels ; Industrial Chemistry/Chemical Engineering ; Life Sciences ; Methods ; Mixed oxides ; Nanomaterials ; Organic acids ; Organometallic Chemistry ; Oxidation ; Physical Chemistry ; Stability analysis ; X ray photoelectron spectroscopy ; Xylose ; Zinc</subject><ispartof>Catalysis letters, 2023-07, Vol.153 (7), p.2210-2222</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-d77be311035cb295ec15dfd7c14806189cf4ce70cc68b2e7b3a117a85b8db4a53</citedby><cites>FETCH-LOGICAL-c353t-d77be311035cb295ec15dfd7c14806189cf4ce70cc68b2e7b3a117a85b8db4a53</cites><orcidid>0000-0003-4196-4351</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10562-022-04151-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10562-022-04151-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://hal.inrae.fr/hal-03778764$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Khallouk, Khadija</creatorcontrib><creatorcontrib>Solhy, Abderrahim</creatorcontrib><creatorcontrib>El khalfaouy, Redouan</creatorcontrib><creatorcontrib>Kherbeche, Abdelhak</creatorcontrib><creatorcontrib>Barakat, Abdellatif</creatorcontrib><title>Mechanosynthezized Zn3V2O8 Mixed Oxide as Efficient Catalyst of Xylose Conversion to Glycolic Acid in Water</title><title>Catalysis letters</title><addtitle>Catal Lett</addtitle><description>Different catalytic materials of mixed oxide of zinc and vanadium Zn 3 V 2 O 8 were synthesized using co-precipitation, combustion, alginate gelation and mechanosynthesis methods. The synthesized mixed oxide Zn 3 V 2 O 8 were characterized by several techniques including XRD, SEM, EDX, XPS and BET. Structural measurement revealed the influence of the synthesis method on the physical and catalytic proprieties of Zn 3 V 2 O 8 materials. Catalytic performance of Zn 3 V 2 O 8 has been studied by oxidation of xylose to organic acids in water at 150 °C for 1 h. Significantly, this is the first time that the Zn 3 V 2 O 8 nano-oxide was used as catalyst for xylose oxidation in water. Zn 3 V 2 O 8 can efficiently catalyze the synthesis of glycolic acid (70% selectivity and 60% yield) from xylose with excellent stability and reusability. The ability to regenerate the Zn 3 V 2 O 8 was also assessed by determining the change in the reaction indices in successive reaction–regeneration cycles. Graphical Abstract</description><subject>Acids</subject><subject>Alginates</subject><subject>Aqueous solutions</subject><subject>Biomass</subject><subject>Carbohydrates</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Catalytic converters</subject><subject>Catalytic oxidation</subject><subject>Chemical industry</subject><subject>Chemical synthesis</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Energy consumption</subject><subject>Food engineering</subject><subject>Glycolic acid</subject><subject>Hydrogels</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Life Sciences</subject><subject>Methods</subject><subject>Mixed oxides</subject><subject>Nanomaterials</subject><subject>Organic acids</subject><subject>Organometallic Chemistry</subject><subject>Oxidation</subject><subject>Physical Chemistry</subject><subject>Stability analysis</subject><subject>X ray photoelectron spectroscopy</subject><subject>Xylose</subject><subject>Zinc</subject><issn>1011-372X</issn><issn>1572-879X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kUtLxDAUhYsoOD7-gKuAKxfV3KSZpMth0BlhZDY-BjchTVMnWpMxqWL99UYrunNxuQ--c7hwsuwI8ClgzM8iYDYmOSapCmCQi61sBIyTXPBytZ1mDJBTTla72V6MjxjjkkM5yp6ujF4r52PvurX5sB-mRveO3pKlQFf2PW3Ld1sbpCI6bxqrrXEdmqpOtX3skG_Qqm99NGjq3ZsJ0XqHOo9mba99azWaaFsj69Cd6kw4yHYa1UZz-NP3s5uL8-vpPF8sZ5fTySLXlNEurzmvDAXAlOmKlMxoYHVTcw2FwGMQpW4KbTjWeiwqYnhFFQBXglWirgrF6H52MviuVSs3wT6r0EuvrJxPFvLrhinngo-LN0js8cBugn95NbGTj_41uPSeJIIwBlAWRaLIQOngYwym-bUFLL8CkEMAMgUgvwOQIonoIIoJdg8m_Fn_o_oErH-H-g</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Khallouk, Khadija</creator><creator>Solhy, Abderrahim</creator><creator>El khalfaouy, Redouan</creator><creator>Kherbeche, Abdelhak</creator><creator>Barakat, Abdellatif</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-4196-4351</orcidid></search><sort><creationdate>20230701</creationdate><title>Mechanosynthezized Zn3V2O8 Mixed Oxide as Efficient Catalyst of Xylose Conversion to Glycolic Acid in Water</title><author>Khallouk, Khadija ; Solhy, Abderrahim ; El khalfaouy, Redouan ; Kherbeche, Abdelhak ; Barakat, Abdellatif</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-d77be311035cb295ec15dfd7c14806189cf4ce70cc68b2e7b3a117a85b8db4a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acids</topic><topic>Alginates</topic><topic>Aqueous solutions</topic><topic>Biomass</topic><topic>Carbohydrates</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Catalytic converters</topic><topic>Catalytic oxidation</topic><topic>Chemical industry</topic><topic>Chemical synthesis</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Energy consumption</topic><topic>Food engineering</topic><topic>Glycolic acid</topic><topic>Hydrogels</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Life Sciences</topic><topic>Methods</topic><topic>Mixed oxides</topic><topic>Nanomaterials</topic><topic>Organic acids</topic><topic>Organometallic Chemistry</topic><topic>Oxidation</topic><topic>Physical Chemistry</topic><topic>Stability analysis</topic><topic>X ray photoelectron spectroscopy</topic><topic>Xylose</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khallouk, Khadija</creatorcontrib><creatorcontrib>Solhy, Abderrahim</creatorcontrib><creatorcontrib>El khalfaouy, Redouan</creatorcontrib><creatorcontrib>Kherbeche, Abdelhak</creatorcontrib><creatorcontrib>Barakat, Abdellatif</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Catalysis letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khallouk, Khadija</au><au>Solhy, Abderrahim</au><au>El khalfaouy, Redouan</au><au>Kherbeche, Abdelhak</au><au>Barakat, Abdellatif</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanosynthezized Zn3V2O8 Mixed Oxide as Efficient Catalyst of Xylose Conversion to Glycolic Acid in Water</atitle><jtitle>Catalysis letters</jtitle><stitle>Catal Lett</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>153</volume><issue>7</issue><spage>2210</spage><epage>2222</epage><pages>2210-2222</pages><issn>1011-372X</issn><eissn>1572-879X</eissn><abstract>Different catalytic materials of mixed oxide of zinc and vanadium Zn 3 V 2 O 8 were synthesized using co-precipitation, combustion, alginate gelation and mechanosynthesis methods. The synthesized mixed oxide Zn 3 V 2 O 8 were characterized by several techniques including XRD, SEM, EDX, XPS and BET. Structural measurement revealed the influence of the synthesis method on the physical and catalytic proprieties of Zn 3 V 2 O 8 materials. Catalytic performance of Zn 3 V 2 O 8 has been studied by oxidation of xylose to organic acids in water at 150 °C for 1 h. Significantly, this is the first time that the Zn 3 V 2 O 8 nano-oxide was used as catalyst for xylose oxidation in water. Zn 3 V 2 O 8 can efficiently catalyze the synthesis of glycolic acid (70% selectivity and 60% yield) from xylose with excellent stability and reusability. The ability to regenerate the Zn 3 V 2 O 8 was also assessed by determining the change in the reaction indices in successive reaction–regeneration cycles. Graphical Abstract</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10562-022-04151-8</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4196-4351</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1011-372X
ispartof Catalysis letters, 2023-07, Vol.153 (7), p.2210-2222
issn 1011-372X
1572-879X
language eng
recordid cdi_hal_primary_oai_HAL_hal_03778764v1
source SpringerLink Journals - AutoHoldings
subjects Acids
Alginates
Aqueous solutions
Biomass
Carbohydrates
Catalysis
Catalysts
Catalytic converters
Catalytic oxidation
Chemical industry
Chemical synthesis
Chemistry
Chemistry and Materials Science
Energy consumption
Food engineering
Glycolic acid
Hydrogels
Industrial Chemistry/Chemical Engineering
Life Sciences
Methods
Mixed oxides
Nanomaterials
Organic acids
Organometallic Chemistry
Oxidation
Physical Chemistry
Stability analysis
X ray photoelectron spectroscopy
Xylose
Zinc
title Mechanosynthezized Zn3V2O8 Mixed Oxide as Efficient Catalyst of Xylose Conversion to Glycolic Acid in Water
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A04%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanosynthezized%20Zn3V2O8%20Mixed%20Oxide%20as%20Efficient%20Catalyst%20of%20Xylose%20Conversion%20to%20Glycolic%20Acid%20in%20Water&rft.jtitle=Catalysis%20letters&rft.au=Khallouk,%20Khadija&rft.date=2023-07-01&rft.volume=153&rft.issue=7&rft.spage=2210&rft.epage=2222&rft.pages=2210-2222&rft.issn=1011-372X&rft.eissn=1572-879X&rft_id=info:doi/10.1007/s10562-022-04151-8&rft_dat=%3Cproquest_hal_p%3E2825511944%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2825511944&rft_id=info:pmid/&rfr_iscdi=true