Mechanosynthezized Zn3V2O8 Mixed Oxide as Efficient Catalyst of Xylose Conversion to Glycolic Acid in Water
Different catalytic materials of mixed oxide of zinc and vanadium Zn 3 V 2 O 8 were synthesized using co-precipitation, combustion, alginate gelation and mechanosynthesis methods. The synthesized mixed oxide Zn 3 V 2 O 8 were characterized by several techniques including XRD, SEM, EDX, XPS and BET....
Gespeichert in:
Veröffentlicht in: | Catalysis letters 2023-07, Vol.153 (7), p.2210-2222 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2222 |
---|---|
container_issue | 7 |
container_start_page | 2210 |
container_title | Catalysis letters |
container_volume | 153 |
creator | Khallouk, Khadija Solhy, Abderrahim El khalfaouy, Redouan Kherbeche, Abdelhak Barakat, Abdellatif |
description | Different catalytic materials of mixed oxide of zinc and vanadium Zn
3
V
2
O
8
were synthesized using co-precipitation, combustion, alginate gelation and mechanosynthesis methods. The synthesized mixed oxide Zn
3
V
2
O
8
were characterized by several techniques including XRD, SEM, EDX, XPS and BET. Structural measurement revealed the influence of the synthesis method on the physical and catalytic proprieties of Zn
3
V
2
O
8
materials. Catalytic performance of Zn
3
V
2
O
8
has been studied by oxidation of xylose to organic acids in water at 150 °C for 1 h. Significantly, this is the first time that the Zn
3
V
2
O
8
nano-oxide was used as catalyst for xylose oxidation in water. Zn
3
V
2
O
8
can efficiently catalyze the synthesis of glycolic acid (70% selectivity and 60% yield) from xylose with excellent stability and reusability. The ability to regenerate the Zn
3
V
2
O
8
was also assessed by determining the change in the reaction indices in successive reaction–regeneration cycles.
Graphical Abstract |
doi_str_mv | 10.1007/s10562-022-04151-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03778764v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2825511944</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-d77be311035cb295ec15dfd7c14806189cf4ce70cc68b2e7b3a117a85b8db4a53</originalsourceid><addsrcrecordid>eNp9kUtLxDAUhYsoOD7-gKuAKxfV3KSZpMth0BlhZDY-BjchTVMnWpMxqWL99UYrunNxuQ--c7hwsuwI8ClgzM8iYDYmOSapCmCQi61sBIyTXPBytZ1mDJBTTla72V6MjxjjkkM5yp6ujF4r52PvurX5sB-mRveO3pKlQFf2PW3Ld1sbpCI6bxqrrXEdmqpOtX3skG_Qqm99NGjq3ZsJ0XqHOo9mba99azWaaFsj69Cd6kw4yHYa1UZz-NP3s5uL8-vpPF8sZ5fTySLXlNEurzmvDAXAlOmKlMxoYHVTcw2FwGMQpW4KbTjWeiwqYnhFFQBXglWirgrF6H52MviuVSs3wT6r0EuvrJxPFvLrhinngo-LN0js8cBugn95NbGTj_41uPSeJIIwBlAWRaLIQOngYwym-bUFLL8CkEMAMgUgvwOQIonoIIoJdg8m_Fn_o_oErH-H-g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2825511944</pqid></control><display><type>article</type><title>Mechanosynthezized Zn3V2O8 Mixed Oxide as Efficient Catalyst of Xylose Conversion to Glycolic Acid in Water</title><source>SpringerLink Journals - AutoHoldings</source><creator>Khallouk, Khadija ; Solhy, Abderrahim ; El khalfaouy, Redouan ; Kherbeche, Abdelhak ; Barakat, Abdellatif</creator><creatorcontrib>Khallouk, Khadija ; Solhy, Abderrahim ; El khalfaouy, Redouan ; Kherbeche, Abdelhak ; Barakat, Abdellatif</creatorcontrib><description>Different catalytic materials of mixed oxide of zinc and vanadium Zn
3
V
2
O
8
were synthesized using co-precipitation, combustion, alginate gelation and mechanosynthesis methods. The synthesized mixed oxide Zn
3
V
2
O
8
were characterized by several techniques including XRD, SEM, EDX, XPS and BET. Structural measurement revealed the influence of the synthesis method on the physical and catalytic proprieties of Zn
3
V
2
O
8
materials. Catalytic performance of Zn
3
V
2
O
8
has been studied by oxidation of xylose to organic acids in water at 150 °C for 1 h. Significantly, this is the first time that the Zn
3
V
2
O
8
nano-oxide was used as catalyst for xylose oxidation in water. Zn
3
V
2
O
8
can efficiently catalyze the synthesis of glycolic acid (70% selectivity and 60% yield) from xylose with excellent stability and reusability. The ability to regenerate the Zn
3
V
2
O
8
was also assessed by determining the change in the reaction indices in successive reaction–regeneration cycles.
Graphical Abstract</description><identifier>ISSN: 1011-372X</identifier><identifier>EISSN: 1572-879X</identifier><identifier>DOI: 10.1007/s10562-022-04151-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Acids ; Alginates ; Aqueous solutions ; Biomass ; Carbohydrates ; Catalysis ; Catalysts ; Catalytic converters ; Catalytic oxidation ; Chemical industry ; Chemical synthesis ; Chemistry ; Chemistry and Materials Science ; Energy consumption ; Food engineering ; Glycolic acid ; Hydrogels ; Industrial Chemistry/Chemical Engineering ; Life Sciences ; Methods ; Mixed oxides ; Nanomaterials ; Organic acids ; Organometallic Chemistry ; Oxidation ; Physical Chemistry ; Stability analysis ; X ray photoelectron spectroscopy ; Xylose ; Zinc</subject><ispartof>Catalysis letters, 2023-07, Vol.153 (7), p.2210-2222</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-d77be311035cb295ec15dfd7c14806189cf4ce70cc68b2e7b3a117a85b8db4a53</citedby><cites>FETCH-LOGICAL-c353t-d77be311035cb295ec15dfd7c14806189cf4ce70cc68b2e7b3a117a85b8db4a53</cites><orcidid>0000-0003-4196-4351</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10562-022-04151-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10562-022-04151-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://hal.inrae.fr/hal-03778764$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Khallouk, Khadija</creatorcontrib><creatorcontrib>Solhy, Abderrahim</creatorcontrib><creatorcontrib>El khalfaouy, Redouan</creatorcontrib><creatorcontrib>Kherbeche, Abdelhak</creatorcontrib><creatorcontrib>Barakat, Abdellatif</creatorcontrib><title>Mechanosynthezized Zn3V2O8 Mixed Oxide as Efficient Catalyst of Xylose Conversion to Glycolic Acid in Water</title><title>Catalysis letters</title><addtitle>Catal Lett</addtitle><description>Different catalytic materials of mixed oxide of zinc and vanadium Zn
3
V
2
O
8
were synthesized using co-precipitation, combustion, alginate gelation and mechanosynthesis methods. The synthesized mixed oxide Zn
3
V
2
O
8
were characterized by several techniques including XRD, SEM, EDX, XPS and BET. Structural measurement revealed the influence of the synthesis method on the physical and catalytic proprieties of Zn
3
V
2
O
8
materials. Catalytic performance of Zn
3
V
2
O
8
has been studied by oxidation of xylose to organic acids in water at 150 °C for 1 h. Significantly, this is the first time that the Zn
3
V
2
O
8
nano-oxide was used as catalyst for xylose oxidation in water. Zn
3
V
2
O
8
can efficiently catalyze the synthesis of glycolic acid (70% selectivity and 60% yield) from xylose with excellent stability and reusability. The ability to regenerate the Zn
3
V
2
O
8
was also assessed by determining the change in the reaction indices in successive reaction–regeneration cycles.
Graphical Abstract</description><subject>Acids</subject><subject>Alginates</subject><subject>Aqueous solutions</subject><subject>Biomass</subject><subject>Carbohydrates</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Catalytic converters</subject><subject>Catalytic oxidation</subject><subject>Chemical industry</subject><subject>Chemical synthesis</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Energy consumption</subject><subject>Food engineering</subject><subject>Glycolic acid</subject><subject>Hydrogels</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Life Sciences</subject><subject>Methods</subject><subject>Mixed oxides</subject><subject>Nanomaterials</subject><subject>Organic acids</subject><subject>Organometallic Chemistry</subject><subject>Oxidation</subject><subject>Physical Chemistry</subject><subject>Stability analysis</subject><subject>X ray photoelectron spectroscopy</subject><subject>Xylose</subject><subject>Zinc</subject><issn>1011-372X</issn><issn>1572-879X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kUtLxDAUhYsoOD7-gKuAKxfV3KSZpMth0BlhZDY-BjchTVMnWpMxqWL99UYrunNxuQ--c7hwsuwI8ClgzM8iYDYmOSapCmCQi61sBIyTXPBytZ1mDJBTTla72V6MjxjjkkM5yp6ujF4r52PvurX5sB-mRveO3pKlQFf2PW3Ld1sbpCI6bxqrrXEdmqpOtX3skG_Qqm99NGjq3ZsJ0XqHOo9mba99azWaaFsj69Cd6kw4yHYa1UZz-NP3s5uL8-vpPF8sZ5fTySLXlNEurzmvDAXAlOmKlMxoYHVTcw2FwGMQpW4KbTjWeiwqYnhFFQBXglWirgrF6H52MviuVSs3wT6r0EuvrJxPFvLrhinngo-LN0js8cBugn95NbGTj_41uPSeJIIwBlAWRaLIQOngYwym-bUFLL8CkEMAMgUgvwOQIonoIIoJdg8m_Fn_o_oErH-H-g</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Khallouk, Khadija</creator><creator>Solhy, Abderrahim</creator><creator>El khalfaouy, Redouan</creator><creator>Kherbeche, Abdelhak</creator><creator>Barakat, Abdellatif</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-4196-4351</orcidid></search><sort><creationdate>20230701</creationdate><title>Mechanosynthezized Zn3V2O8 Mixed Oxide as Efficient Catalyst of Xylose Conversion to Glycolic Acid in Water</title><author>Khallouk, Khadija ; Solhy, Abderrahim ; El khalfaouy, Redouan ; Kherbeche, Abdelhak ; Barakat, Abdellatif</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-d77be311035cb295ec15dfd7c14806189cf4ce70cc68b2e7b3a117a85b8db4a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acids</topic><topic>Alginates</topic><topic>Aqueous solutions</topic><topic>Biomass</topic><topic>Carbohydrates</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Catalytic converters</topic><topic>Catalytic oxidation</topic><topic>Chemical industry</topic><topic>Chemical synthesis</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Energy consumption</topic><topic>Food engineering</topic><topic>Glycolic acid</topic><topic>Hydrogels</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Life Sciences</topic><topic>Methods</topic><topic>Mixed oxides</topic><topic>Nanomaterials</topic><topic>Organic acids</topic><topic>Organometallic Chemistry</topic><topic>Oxidation</topic><topic>Physical Chemistry</topic><topic>Stability analysis</topic><topic>X ray photoelectron spectroscopy</topic><topic>Xylose</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khallouk, Khadija</creatorcontrib><creatorcontrib>Solhy, Abderrahim</creatorcontrib><creatorcontrib>El khalfaouy, Redouan</creatorcontrib><creatorcontrib>Kherbeche, Abdelhak</creatorcontrib><creatorcontrib>Barakat, Abdellatif</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Catalysis letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khallouk, Khadija</au><au>Solhy, Abderrahim</au><au>El khalfaouy, Redouan</au><au>Kherbeche, Abdelhak</au><au>Barakat, Abdellatif</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanosynthezized Zn3V2O8 Mixed Oxide as Efficient Catalyst of Xylose Conversion to Glycolic Acid in Water</atitle><jtitle>Catalysis letters</jtitle><stitle>Catal Lett</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>153</volume><issue>7</issue><spage>2210</spage><epage>2222</epage><pages>2210-2222</pages><issn>1011-372X</issn><eissn>1572-879X</eissn><abstract>Different catalytic materials of mixed oxide of zinc and vanadium Zn
3
V
2
O
8
were synthesized using co-precipitation, combustion, alginate gelation and mechanosynthesis methods. The synthesized mixed oxide Zn
3
V
2
O
8
were characterized by several techniques including XRD, SEM, EDX, XPS and BET. Structural measurement revealed the influence of the synthesis method on the physical and catalytic proprieties of Zn
3
V
2
O
8
materials. Catalytic performance of Zn
3
V
2
O
8
has been studied by oxidation of xylose to organic acids in water at 150 °C for 1 h. Significantly, this is the first time that the Zn
3
V
2
O
8
nano-oxide was used as catalyst for xylose oxidation in water. Zn
3
V
2
O
8
can efficiently catalyze the synthesis of glycolic acid (70% selectivity and 60% yield) from xylose with excellent stability and reusability. The ability to regenerate the Zn
3
V
2
O
8
was also assessed by determining the change in the reaction indices in successive reaction–regeneration cycles.
Graphical Abstract</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10562-022-04151-8</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4196-4351</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1011-372X |
ispartof | Catalysis letters, 2023-07, Vol.153 (7), p.2210-2222 |
issn | 1011-372X 1572-879X |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03778764v1 |
source | SpringerLink Journals - AutoHoldings |
subjects | Acids Alginates Aqueous solutions Biomass Carbohydrates Catalysis Catalysts Catalytic converters Catalytic oxidation Chemical industry Chemical synthesis Chemistry Chemistry and Materials Science Energy consumption Food engineering Glycolic acid Hydrogels Industrial Chemistry/Chemical Engineering Life Sciences Methods Mixed oxides Nanomaterials Organic acids Organometallic Chemistry Oxidation Physical Chemistry Stability analysis X ray photoelectron spectroscopy Xylose Zinc |
title | Mechanosynthezized Zn3V2O8 Mixed Oxide as Efficient Catalyst of Xylose Conversion to Glycolic Acid in Water |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A04%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanosynthezized%20Zn3V2O8%20Mixed%20Oxide%20as%20Efficient%20Catalyst%20of%20Xylose%20Conversion%20to%20Glycolic%20Acid%20in%20Water&rft.jtitle=Catalysis%20letters&rft.au=Khallouk,%20Khadija&rft.date=2023-07-01&rft.volume=153&rft.issue=7&rft.spage=2210&rft.epage=2222&rft.pages=2210-2222&rft.issn=1011-372X&rft.eissn=1572-879X&rft_id=info:doi/10.1007/s10562-022-04151-8&rft_dat=%3Cproquest_hal_p%3E2825511944%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2825511944&rft_id=info:pmid/&rfr_iscdi=true |