Phospholipase D1-generated phosphatidic acid modulates secretory granule trafficking from biogenesis to compensatory endocytosis in neuroendocrine cells
Calcium-regulated exocytosis is a multi-step process that allows specialized secretory cells to release informative molecules such as neurotransmitters, neuropeptides, and hormones for intercellular communication. The biogenesis of secretory vesicles from the Golgi cisternae is followed by their tra...
Gespeichert in:
Veröffentlicht in: | Advances in biological regulation 2022-01, Vol.83, p.100844-100844, Article 100844 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 100844 |
---|---|
container_issue | |
container_start_page | 100844 |
container_title | Advances in biological regulation |
container_volume | 83 |
creator | Tanguy, Emeline Wolf, Alexander Wang, Qili Chasserot-Golaz, Sylvette Ory, Stéphane Gasman, Stéphane Vitale, Nicolas |
description | Calcium-regulated exocytosis is a multi-step process that allows specialized secretory cells to release informative molecules such as neurotransmitters, neuropeptides, and hormones for intercellular communication. The biogenesis of secretory vesicles from the Golgi cisternae is followed by their transport towards the cell periphery and their docking and fusion to the exocytic sites of the plasma membrane allowing release of vesicular content. Subsequent compensatory endocytosis of the protein and lipidic constituents of the vesicles maintains cell homeostasis. Despite the fact that lipids represent the majority of membrane constituents, little is known about their contribution to these processes. Using a combination of electrochemical measurement of single chromaffin cell catecholamine secretion and electron microscopy of roof-top membrane sheets associated with genetic, silencing and pharmacological approaches, we recently reported that diverse phosphatidic acid (PA) species regulates catecholamine release efficiency by controlling granule docking and fusion kinetics. The enzyme phospholipase D1 (PLD1), producing PA from phosphatidylcholine, seems to be the major responsible of these effects in this model. Here, we extended this work using spinning disk confocal microscopy showing that inhibition of PLD activity also reduced the velocity of granules undergoing a directed motion. Furthermore, a dopamine β-hydroxylase (DβH) internalization assay revealed that PA produced by PLD is required for an optimal recovery of vesicular membrane content by compensatory endocytosis. Thus, among numerous roles that have been attributed to PA our work gives core to the key regulatory role in secretion that has been proposed in different cell models. Few leads to explain these multiple functions of PA along the secretory pathway are discussed. |
doi_str_mv | 10.1016/j.jbior.2021.100844 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03775129v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2212492621000609</els_id><sourcerecordid>2640588340</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-26313f0d3637359f88907b416179946f025c304f86677ae472bb3bfa70fad94e3</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhSMEolXpEyAhS2xgkcF_cZwFi6q0FGkkWMDacpzrGQ-JHeyk0rwJj4szKbNggTe27v3O8bVPUbwmeEMwER8Om0PrQtxQTEmuYMn5s-KSUkJL3jD-_Hym4qK4TumA8xJZyauXxQXjshZM8svi97d9SOM-9G7UCdAnUu7AQ9QTdGg8tfTkOmeQNq5DQ-jmPvcSSmAiTCEe0S5qP_eApqitdean8ztkYxhQnm_xSi6hKSAThhF80icN-C6Y4xSWnvPIwxzDqRadB2Sg79Or4oXVfYLrp_2q-HF_9_32odx-_fzl9mZbGi7EVFLBCLO4Y4LVrGqslA2uW04EqZuGC4tpZRjmVgpR1xp4TduWtVbX2Oqu4cCuiver7173aoxu0PGognbq4WarlhpmdV0R2jySzL5b2TGGXzOkSQ0uLdNqD2FOigoscVNRLjP69h_0EObo80syxXElJeM4U2ylTAwpRbDnCQhWS87qoE45qyVnteacVW-evOd2gO6s-ZtqBj6uAOSPe3QQVTIOvIHORTCT6oL77wV_ACZ-u3w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2640588340</pqid></control><display><type>article</type><title>Phospholipase D1-generated phosphatidic acid modulates secretory granule trafficking from biogenesis to compensatory endocytosis in neuroendocrine cells</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Tanguy, Emeline ; Wolf, Alexander ; Wang, Qili ; Chasserot-Golaz, Sylvette ; Ory, Stéphane ; Gasman, Stéphane ; Vitale, Nicolas</creator><creatorcontrib>Tanguy, Emeline ; Wolf, Alexander ; Wang, Qili ; Chasserot-Golaz, Sylvette ; Ory, Stéphane ; Gasman, Stéphane ; Vitale, Nicolas</creatorcontrib><description>Calcium-regulated exocytosis is a multi-step process that allows specialized secretory cells to release informative molecules such as neurotransmitters, neuropeptides, and hormones for intercellular communication. The biogenesis of secretory vesicles from the Golgi cisternae is followed by their transport towards the cell periphery and their docking and fusion to the exocytic sites of the plasma membrane allowing release of vesicular content. Subsequent compensatory endocytosis of the protein and lipidic constituents of the vesicles maintains cell homeostasis. Despite the fact that lipids represent the majority of membrane constituents, little is known about their contribution to these processes. Using a combination of electrochemical measurement of single chromaffin cell catecholamine secretion and electron microscopy of roof-top membrane sheets associated with genetic, silencing and pharmacological approaches, we recently reported that diverse phosphatidic acid (PA) species regulates catecholamine release efficiency by controlling granule docking and fusion kinetics. The enzyme phospholipase D1 (PLD1), producing PA from phosphatidylcholine, seems to be the major responsible of these effects in this model. Here, we extended this work using spinning disk confocal microscopy showing that inhibition of PLD activity also reduced the velocity of granules undergoing a directed motion. Furthermore, a dopamine β-hydroxylase (DβH) internalization assay revealed that PA produced by PLD is required for an optimal recovery of vesicular membrane content by compensatory endocytosis. Thus, among numerous roles that have been attributed to PA our work gives core to the key regulatory role in secretion that has been proposed in different cell models. Few leads to explain these multiple functions of PA along the secretory pathway are discussed.</description><identifier>ISSN: 2212-4926</identifier><identifier>EISSN: 2212-4934</identifier><identifier>DOI: 10.1016/j.jbior.2021.100844</identifier><identifier>PMID: 34876384</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Biosynthesis ; Catecholamine ; Catecholamines ; Cell culture ; Confocal microscopy ; Constituents ; Docking ; Dopamine ; Dopamine D1 receptors ; Dopamine β-monooxygenase ; Electrochemistry ; Electron microscopy ; Endocytosis ; Endocytosis - genetics ; Exocytosis ; Exocytosis - physiology ; Fatty acid ; Golgi apparatus ; Granular materials ; Homeostasis ; Hormones ; Humans ; Hydroxylase ; Internalization ; Lecithin ; Life Sciences ; Lipids ; Membranes ; Microscopy ; Neurobiology ; Neuroendocrine Cells - metabolism ; Neuroendocrine secretion ; Neurons and Cognition ; Neuropeptides ; Neurotransmitters ; Phosphatidic acid ; Phosphatidic Acids - metabolism ; Phosphatidylcholine ; Phospholipase ; Phospholipase D ; Phospholipase D - genetics ; Phospholipase D - metabolism ; Phospholipase D1 ; Secretion ; Secretory vesicles ; Secretory Vesicles - genetics ; Secretory Vesicles - metabolism ; Vesicles</subject><ispartof>Advances in biological regulation, 2022-01, Vol.83, p.100844-100844, Article 100844</ispartof><rights>2021 The Authors</rights><rights>Copyright © 2021 The Authors. Published by Elsevier Ltd.. All rights reserved.</rights><rights>Copyright Elsevier BV 2021</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-26313f0d3637359f88907b416179946f025c304f86677ae472bb3bfa70fad94e3</citedby><cites>FETCH-LOGICAL-c466t-26313f0d3637359f88907b416179946f025c304f86677ae472bb3bfa70fad94e3</cites><orcidid>0000-0002-4752-4907 ; 0000-0003-4359-1157</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883,27911,27912</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34876384$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03775129$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Tanguy, Emeline</creatorcontrib><creatorcontrib>Wolf, Alexander</creatorcontrib><creatorcontrib>Wang, Qili</creatorcontrib><creatorcontrib>Chasserot-Golaz, Sylvette</creatorcontrib><creatorcontrib>Ory, Stéphane</creatorcontrib><creatorcontrib>Gasman, Stéphane</creatorcontrib><creatorcontrib>Vitale, Nicolas</creatorcontrib><title>Phospholipase D1-generated phosphatidic acid modulates secretory granule trafficking from biogenesis to compensatory endocytosis in neuroendocrine cells</title><title>Advances in biological regulation</title><addtitle>Adv Biol Regul</addtitle><description>Calcium-regulated exocytosis is a multi-step process that allows specialized secretory cells to release informative molecules such as neurotransmitters, neuropeptides, and hormones for intercellular communication. The biogenesis of secretory vesicles from the Golgi cisternae is followed by their transport towards the cell periphery and their docking and fusion to the exocytic sites of the plasma membrane allowing release of vesicular content. Subsequent compensatory endocytosis of the protein and lipidic constituents of the vesicles maintains cell homeostasis. Despite the fact that lipids represent the majority of membrane constituents, little is known about their contribution to these processes. Using a combination of electrochemical measurement of single chromaffin cell catecholamine secretion and electron microscopy of roof-top membrane sheets associated with genetic, silencing and pharmacological approaches, we recently reported that diverse phosphatidic acid (PA) species regulates catecholamine release efficiency by controlling granule docking and fusion kinetics. The enzyme phospholipase D1 (PLD1), producing PA from phosphatidylcholine, seems to be the major responsible of these effects in this model. Here, we extended this work using spinning disk confocal microscopy showing that inhibition of PLD activity also reduced the velocity of granules undergoing a directed motion. Furthermore, a dopamine β-hydroxylase (DβH) internalization assay revealed that PA produced by PLD is required for an optimal recovery of vesicular membrane content by compensatory endocytosis. Thus, among numerous roles that have been attributed to PA our work gives core to the key regulatory role in secretion that has been proposed in different cell models. Few leads to explain these multiple functions of PA along the secretory pathway are discussed.</description><subject>Biosynthesis</subject><subject>Catecholamine</subject><subject>Catecholamines</subject><subject>Cell culture</subject><subject>Confocal microscopy</subject><subject>Constituents</subject><subject>Docking</subject><subject>Dopamine</subject><subject>Dopamine D1 receptors</subject><subject>Dopamine β-monooxygenase</subject><subject>Electrochemistry</subject><subject>Electron microscopy</subject><subject>Endocytosis</subject><subject>Endocytosis - genetics</subject><subject>Exocytosis</subject><subject>Exocytosis - physiology</subject><subject>Fatty acid</subject><subject>Golgi apparatus</subject><subject>Granular materials</subject><subject>Homeostasis</subject><subject>Hormones</subject><subject>Humans</subject><subject>Hydroxylase</subject><subject>Internalization</subject><subject>Lecithin</subject><subject>Life Sciences</subject><subject>Lipids</subject><subject>Membranes</subject><subject>Microscopy</subject><subject>Neurobiology</subject><subject>Neuroendocrine Cells - metabolism</subject><subject>Neuroendocrine secretion</subject><subject>Neurons and Cognition</subject><subject>Neuropeptides</subject><subject>Neurotransmitters</subject><subject>Phosphatidic acid</subject><subject>Phosphatidic Acids - metabolism</subject><subject>Phosphatidylcholine</subject><subject>Phospholipase</subject><subject>Phospholipase D</subject><subject>Phospholipase D - genetics</subject><subject>Phospholipase D - metabolism</subject><subject>Phospholipase D1</subject><subject>Secretion</subject><subject>Secretory vesicles</subject><subject>Secretory Vesicles - genetics</subject><subject>Secretory Vesicles - metabolism</subject><subject>Vesicles</subject><issn>2212-4926</issn><issn>2212-4934</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1u1DAUhSMEolXpEyAhS2xgkcF_cZwFi6q0FGkkWMDacpzrGQ-JHeyk0rwJj4szKbNggTe27v3O8bVPUbwmeEMwER8Om0PrQtxQTEmuYMn5s-KSUkJL3jD-_Hym4qK4TumA8xJZyauXxQXjshZM8svi97d9SOM-9G7UCdAnUu7AQ9QTdGg8tfTkOmeQNq5DQ-jmPvcSSmAiTCEe0S5qP_eApqitdean8ztkYxhQnm_xSi6hKSAThhF80icN-C6Y4xSWnvPIwxzDqRadB2Sg79Or4oXVfYLrp_2q-HF_9_32odx-_fzl9mZbGi7EVFLBCLO4Y4LVrGqslA2uW04EqZuGC4tpZRjmVgpR1xp4TduWtVbX2Oqu4cCuiver7173aoxu0PGognbq4WarlhpmdV0R2jySzL5b2TGGXzOkSQ0uLdNqD2FOigoscVNRLjP69h_0EObo80syxXElJeM4U2ylTAwpRbDnCQhWS87qoE45qyVnteacVW-evOd2gO6s-ZtqBj6uAOSPe3QQVTIOvIHORTCT6oL77wV_ACZ-u3w</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Tanguy, Emeline</creator><creator>Wolf, Alexander</creator><creator>Wang, Qili</creator><creator>Chasserot-Golaz, Sylvette</creator><creator>Ory, Stéphane</creator><creator>Gasman, Stéphane</creator><creator>Vitale, Nicolas</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-4752-4907</orcidid><orcidid>https://orcid.org/0000-0003-4359-1157</orcidid></search><sort><creationdate>20220101</creationdate><title>Phospholipase D1-generated phosphatidic acid modulates secretory granule trafficking from biogenesis to compensatory endocytosis in neuroendocrine cells</title><author>Tanguy, Emeline ; Wolf, Alexander ; Wang, Qili ; Chasserot-Golaz, Sylvette ; Ory, Stéphane ; Gasman, Stéphane ; Vitale, Nicolas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-26313f0d3637359f88907b416179946f025c304f86677ae472bb3bfa70fad94e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biosynthesis</topic><topic>Catecholamine</topic><topic>Catecholamines</topic><topic>Cell culture</topic><topic>Confocal microscopy</topic><topic>Constituents</topic><topic>Docking</topic><topic>Dopamine</topic><topic>Dopamine D1 receptors</topic><topic>Dopamine β-monooxygenase</topic><topic>Electrochemistry</topic><topic>Electron microscopy</topic><topic>Endocytosis</topic><topic>Endocytosis - genetics</topic><topic>Exocytosis</topic><topic>Exocytosis - physiology</topic><topic>Fatty acid</topic><topic>Golgi apparatus</topic><topic>Granular materials</topic><topic>Homeostasis</topic><topic>Hormones</topic><topic>Humans</topic><topic>Hydroxylase</topic><topic>Internalization</topic><topic>Lecithin</topic><topic>Life Sciences</topic><topic>Lipids</topic><topic>Membranes</topic><topic>Microscopy</topic><topic>Neurobiology</topic><topic>Neuroendocrine Cells - metabolism</topic><topic>Neuroendocrine secretion</topic><topic>Neurons and Cognition</topic><topic>Neuropeptides</topic><topic>Neurotransmitters</topic><topic>Phosphatidic acid</topic><topic>Phosphatidic Acids - metabolism</topic><topic>Phosphatidylcholine</topic><topic>Phospholipase</topic><topic>Phospholipase D</topic><topic>Phospholipase D - genetics</topic><topic>Phospholipase D - metabolism</topic><topic>Phospholipase D1</topic><topic>Secretion</topic><topic>Secretory vesicles</topic><topic>Secretory Vesicles - genetics</topic><topic>Secretory Vesicles - metabolism</topic><topic>Vesicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tanguy, Emeline</creatorcontrib><creatorcontrib>Wolf, Alexander</creatorcontrib><creatorcontrib>Wang, Qili</creatorcontrib><creatorcontrib>Chasserot-Golaz, Sylvette</creatorcontrib><creatorcontrib>Ory, Stéphane</creatorcontrib><creatorcontrib>Gasman, Stéphane</creatorcontrib><creatorcontrib>Vitale, Nicolas</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Advances in biological regulation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tanguy, Emeline</au><au>Wolf, Alexander</au><au>Wang, Qili</au><au>Chasserot-Golaz, Sylvette</au><au>Ory, Stéphane</au><au>Gasman, Stéphane</au><au>Vitale, Nicolas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phospholipase D1-generated phosphatidic acid modulates secretory granule trafficking from biogenesis to compensatory endocytosis in neuroendocrine cells</atitle><jtitle>Advances in biological regulation</jtitle><addtitle>Adv Biol Regul</addtitle><date>2022-01-01</date><risdate>2022</risdate><volume>83</volume><spage>100844</spage><epage>100844</epage><pages>100844-100844</pages><artnum>100844</artnum><issn>2212-4926</issn><eissn>2212-4934</eissn><abstract>Calcium-regulated exocytosis is a multi-step process that allows specialized secretory cells to release informative molecules such as neurotransmitters, neuropeptides, and hormones for intercellular communication. The biogenesis of secretory vesicles from the Golgi cisternae is followed by their transport towards the cell periphery and their docking and fusion to the exocytic sites of the plasma membrane allowing release of vesicular content. Subsequent compensatory endocytosis of the protein and lipidic constituents of the vesicles maintains cell homeostasis. Despite the fact that lipids represent the majority of membrane constituents, little is known about their contribution to these processes. Using a combination of electrochemical measurement of single chromaffin cell catecholamine secretion and electron microscopy of roof-top membrane sheets associated with genetic, silencing and pharmacological approaches, we recently reported that diverse phosphatidic acid (PA) species regulates catecholamine release efficiency by controlling granule docking and fusion kinetics. The enzyme phospholipase D1 (PLD1), producing PA from phosphatidylcholine, seems to be the major responsible of these effects in this model. Here, we extended this work using spinning disk confocal microscopy showing that inhibition of PLD activity also reduced the velocity of granules undergoing a directed motion. Furthermore, a dopamine β-hydroxylase (DβH) internalization assay revealed that PA produced by PLD is required for an optimal recovery of vesicular membrane content by compensatory endocytosis. Thus, among numerous roles that have been attributed to PA our work gives core to the key regulatory role in secretion that has been proposed in different cell models. Few leads to explain these multiple functions of PA along the secretory pathway are discussed.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>34876384</pmid><doi>10.1016/j.jbior.2021.100844</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-4752-4907</orcidid><orcidid>https://orcid.org/0000-0003-4359-1157</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2212-4926 |
ispartof | Advances in biological regulation, 2022-01, Vol.83, p.100844-100844, Article 100844 |
issn | 2212-4926 2212-4934 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03775129v1 |
source | MEDLINE; Alma/SFX Local Collection |
subjects | Biosynthesis Catecholamine Catecholamines Cell culture Confocal microscopy Constituents Docking Dopamine Dopamine D1 receptors Dopamine β-monooxygenase Electrochemistry Electron microscopy Endocytosis Endocytosis - genetics Exocytosis Exocytosis - physiology Fatty acid Golgi apparatus Granular materials Homeostasis Hormones Humans Hydroxylase Internalization Lecithin Life Sciences Lipids Membranes Microscopy Neurobiology Neuroendocrine Cells - metabolism Neuroendocrine secretion Neurons and Cognition Neuropeptides Neurotransmitters Phosphatidic acid Phosphatidic Acids - metabolism Phosphatidylcholine Phospholipase Phospholipase D Phospholipase D - genetics Phospholipase D - metabolism Phospholipase D1 Secretion Secretory vesicles Secretory Vesicles - genetics Secretory Vesicles - metabolism Vesicles |
title | Phospholipase D1-generated phosphatidic acid modulates secretory granule trafficking from biogenesis to compensatory endocytosis in neuroendocrine cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T00%3A48%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phospholipase%20D1-generated%20phosphatidic%20acid%20modulates%20secretory%20granule%20trafficking%20from%20biogenesis%20to%20compensatory%20endocytosis%20in%20neuroendocrine%20cells&rft.jtitle=Advances%20in%20biological%20regulation&rft.au=Tanguy,%20Emeline&rft.date=2022-01-01&rft.volume=83&rft.spage=100844&rft.epage=100844&rft.pages=100844-100844&rft.artnum=100844&rft.issn=2212-4926&rft.eissn=2212-4934&rft_id=info:doi/10.1016/j.jbior.2021.100844&rft_dat=%3Cproquest_hal_p%3E2640588340%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2640588340&rft_id=info:pmid/34876384&rft_els_id=S2212492621000609&rfr_iscdi=true |