Phospholipase D1-generated phosphatidic acid modulates secretory granule trafficking from biogenesis to compensatory endocytosis in neuroendocrine cells

Calcium-regulated exocytosis is a multi-step process that allows specialized secretory cells to release informative molecules such as neurotransmitters, neuropeptides, and hormones for intercellular communication. The biogenesis of secretory vesicles from the Golgi cisternae is followed by their tra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in biological regulation 2022-01, Vol.83, p.100844-100844, Article 100844
Hauptverfasser: Tanguy, Emeline, Wolf, Alexander, Wang, Qili, Chasserot-Golaz, Sylvette, Ory, Stéphane, Gasman, Stéphane, Vitale, Nicolas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 100844
container_issue
container_start_page 100844
container_title Advances in biological regulation
container_volume 83
creator Tanguy, Emeline
Wolf, Alexander
Wang, Qili
Chasserot-Golaz, Sylvette
Ory, Stéphane
Gasman, Stéphane
Vitale, Nicolas
description Calcium-regulated exocytosis is a multi-step process that allows specialized secretory cells to release informative molecules such as neurotransmitters, neuropeptides, and hormones for intercellular communication. The biogenesis of secretory vesicles from the Golgi cisternae is followed by their transport towards the cell periphery and their docking and fusion to the exocytic sites of the plasma membrane allowing release of vesicular content. Subsequent compensatory endocytosis of the protein and lipidic constituents of the vesicles maintains cell homeostasis. Despite the fact that lipids represent the majority of membrane constituents, little is known about their contribution to these processes. Using a combination of electrochemical measurement of single chromaffin cell catecholamine secretion and electron microscopy of roof-top membrane sheets associated with genetic, silencing and pharmacological approaches, we recently reported that diverse phosphatidic acid (PA) species regulates catecholamine release efficiency by controlling granule docking and fusion kinetics. The enzyme phospholipase D1 (PLD1), producing PA from phosphatidylcholine, seems to be the major responsible of these effects in this model. Here, we extended this work using spinning disk confocal microscopy showing that inhibition of PLD activity also reduced the velocity of granules undergoing a directed motion. Furthermore, a dopamine β-hydroxylase (DβH) internalization assay revealed that PA produced by PLD is required for an optimal recovery of vesicular membrane content by compensatory endocytosis. Thus, among numerous roles that have been attributed to PA our work gives core to the key regulatory role in secretion that has been proposed in different cell models. Few leads to explain these multiple functions of PA along the secretory pathway are discussed.
doi_str_mv 10.1016/j.jbior.2021.100844
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03775129v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2212492621000609</els_id><sourcerecordid>2640588340</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-26313f0d3637359f88907b416179946f025c304f86677ae472bb3bfa70fad94e3</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhSMEolXpEyAhS2xgkcF_cZwFi6q0FGkkWMDacpzrGQ-JHeyk0rwJj4szKbNggTe27v3O8bVPUbwmeEMwER8Om0PrQtxQTEmuYMn5s-KSUkJL3jD-_Hym4qK4TumA8xJZyauXxQXjshZM8svi97d9SOM-9G7UCdAnUu7AQ9QTdGg8tfTkOmeQNq5DQ-jmPvcSSmAiTCEe0S5qP_eApqitdean8ztkYxhQnm_xSi6hKSAThhF80icN-C6Y4xSWnvPIwxzDqRadB2Sg79Or4oXVfYLrp_2q-HF_9_32odx-_fzl9mZbGi7EVFLBCLO4Y4LVrGqslA2uW04EqZuGC4tpZRjmVgpR1xp4TduWtVbX2Oqu4cCuiver7173aoxu0PGognbq4WarlhpmdV0R2jySzL5b2TGGXzOkSQ0uLdNqD2FOigoscVNRLjP69h_0EObo80syxXElJeM4U2ylTAwpRbDnCQhWS87qoE45qyVnteacVW-evOd2gO6s-ZtqBj6uAOSPe3QQVTIOvIHORTCT6oL77wV_ACZ-u3w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2640588340</pqid></control><display><type>article</type><title>Phospholipase D1-generated phosphatidic acid modulates secretory granule trafficking from biogenesis to compensatory endocytosis in neuroendocrine cells</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Tanguy, Emeline ; Wolf, Alexander ; Wang, Qili ; Chasserot-Golaz, Sylvette ; Ory, Stéphane ; Gasman, Stéphane ; Vitale, Nicolas</creator><creatorcontrib>Tanguy, Emeline ; Wolf, Alexander ; Wang, Qili ; Chasserot-Golaz, Sylvette ; Ory, Stéphane ; Gasman, Stéphane ; Vitale, Nicolas</creatorcontrib><description>Calcium-regulated exocytosis is a multi-step process that allows specialized secretory cells to release informative molecules such as neurotransmitters, neuropeptides, and hormones for intercellular communication. The biogenesis of secretory vesicles from the Golgi cisternae is followed by their transport towards the cell periphery and their docking and fusion to the exocytic sites of the plasma membrane allowing release of vesicular content. Subsequent compensatory endocytosis of the protein and lipidic constituents of the vesicles maintains cell homeostasis. Despite the fact that lipids represent the majority of membrane constituents, little is known about their contribution to these processes. Using a combination of electrochemical measurement of single chromaffin cell catecholamine secretion and electron microscopy of roof-top membrane sheets associated with genetic, silencing and pharmacological approaches, we recently reported that diverse phosphatidic acid (PA) species regulates catecholamine release efficiency by controlling granule docking and fusion kinetics. The enzyme phospholipase D1 (PLD1), producing PA from phosphatidylcholine, seems to be the major responsible of these effects in this model. Here, we extended this work using spinning disk confocal microscopy showing that inhibition of PLD activity also reduced the velocity of granules undergoing a directed motion. Furthermore, a dopamine β-hydroxylase (DβH) internalization assay revealed that PA produced by PLD is required for an optimal recovery of vesicular membrane content by compensatory endocytosis. Thus, among numerous roles that have been attributed to PA our work gives core to the key regulatory role in secretion that has been proposed in different cell models. Few leads to explain these multiple functions of PA along the secretory pathway are discussed.</description><identifier>ISSN: 2212-4926</identifier><identifier>EISSN: 2212-4934</identifier><identifier>DOI: 10.1016/j.jbior.2021.100844</identifier><identifier>PMID: 34876384</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Biosynthesis ; Catecholamine ; Catecholamines ; Cell culture ; Confocal microscopy ; Constituents ; Docking ; Dopamine ; Dopamine D1 receptors ; Dopamine β-monooxygenase ; Electrochemistry ; Electron microscopy ; Endocytosis ; Endocytosis - genetics ; Exocytosis ; Exocytosis - physiology ; Fatty acid ; Golgi apparatus ; Granular materials ; Homeostasis ; Hormones ; Humans ; Hydroxylase ; Internalization ; Lecithin ; Life Sciences ; Lipids ; Membranes ; Microscopy ; Neurobiology ; Neuroendocrine Cells - metabolism ; Neuroendocrine secretion ; Neurons and Cognition ; Neuropeptides ; Neurotransmitters ; Phosphatidic acid ; Phosphatidic Acids - metabolism ; Phosphatidylcholine ; Phospholipase ; Phospholipase D ; Phospholipase D - genetics ; Phospholipase D - metabolism ; Phospholipase D1 ; Secretion ; Secretory vesicles ; Secretory Vesicles - genetics ; Secretory Vesicles - metabolism ; Vesicles</subject><ispartof>Advances in biological regulation, 2022-01, Vol.83, p.100844-100844, Article 100844</ispartof><rights>2021 The Authors</rights><rights>Copyright © 2021 The Authors. Published by Elsevier Ltd.. All rights reserved.</rights><rights>Copyright Elsevier BV 2021</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-26313f0d3637359f88907b416179946f025c304f86677ae472bb3bfa70fad94e3</citedby><cites>FETCH-LOGICAL-c466t-26313f0d3637359f88907b416179946f025c304f86677ae472bb3bfa70fad94e3</cites><orcidid>0000-0002-4752-4907 ; 0000-0003-4359-1157</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883,27911,27912</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34876384$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03775129$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Tanguy, Emeline</creatorcontrib><creatorcontrib>Wolf, Alexander</creatorcontrib><creatorcontrib>Wang, Qili</creatorcontrib><creatorcontrib>Chasserot-Golaz, Sylvette</creatorcontrib><creatorcontrib>Ory, Stéphane</creatorcontrib><creatorcontrib>Gasman, Stéphane</creatorcontrib><creatorcontrib>Vitale, Nicolas</creatorcontrib><title>Phospholipase D1-generated phosphatidic acid modulates secretory granule trafficking from biogenesis to compensatory endocytosis in neuroendocrine cells</title><title>Advances in biological regulation</title><addtitle>Adv Biol Regul</addtitle><description>Calcium-regulated exocytosis is a multi-step process that allows specialized secretory cells to release informative molecules such as neurotransmitters, neuropeptides, and hormones for intercellular communication. The biogenesis of secretory vesicles from the Golgi cisternae is followed by their transport towards the cell periphery and their docking and fusion to the exocytic sites of the plasma membrane allowing release of vesicular content. Subsequent compensatory endocytosis of the protein and lipidic constituents of the vesicles maintains cell homeostasis. Despite the fact that lipids represent the majority of membrane constituents, little is known about their contribution to these processes. Using a combination of electrochemical measurement of single chromaffin cell catecholamine secretion and electron microscopy of roof-top membrane sheets associated with genetic, silencing and pharmacological approaches, we recently reported that diverse phosphatidic acid (PA) species regulates catecholamine release efficiency by controlling granule docking and fusion kinetics. The enzyme phospholipase D1 (PLD1), producing PA from phosphatidylcholine, seems to be the major responsible of these effects in this model. Here, we extended this work using spinning disk confocal microscopy showing that inhibition of PLD activity also reduced the velocity of granules undergoing a directed motion. Furthermore, a dopamine β-hydroxylase (DβH) internalization assay revealed that PA produced by PLD is required for an optimal recovery of vesicular membrane content by compensatory endocytosis. Thus, among numerous roles that have been attributed to PA our work gives core to the key regulatory role in secretion that has been proposed in different cell models. Few leads to explain these multiple functions of PA along the secretory pathway are discussed.</description><subject>Biosynthesis</subject><subject>Catecholamine</subject><subject>Catecholamines</subject><subject>Cell culture</subject><subject>Confocal microscopy</subject><subject>Constituents</subject><subject>Docking</subject><subject>Dopamine</subject><subject>Dopamine D1 receptors</subject><subject>Dopamine β-monooxygenase</subject><subject>Electrochemistry</subject><subject>Electron microscopy</subject><subject>Endocytosis</subject><subject>Endocytosis - genetics</subject><subject>Exocytosis</subject><subject>Exocytosis - physiology</subject><subject>Fatty acid</subject><subject>Golgi apparatus</subject><subject>Granular materials</subject><subject>Homeostasis</subject><subject>Hormones</subject><subject>Humans</subject><subject>Hydroxylase</subject><subject>Internalization</subject><subject>Lecithin</subject><subject>Life Sciences</subject><subject>Lipids</subject><subject>Membranes</subject><subject>Microscopy</subject><subject>Neurobiology</subject><subject>Neuroendocrine Cells - metabolism</subject><subject>Neuroendocrine secretion</subject><subject>Neurons and Cognition</subject><subject>Neuropeptides</subject><subject>Neurotransmitters</subject><subject>Phosphatidic acid</subject><subject>Phosphatidic Acids - metabolism</subject><subject>Phosphatidylcholine</subject><subject>Phospholipase</subject><subject>Phospholipase D</subject><subject>Phospholipase D - genetics</subject><subject>Phospholipase D - metabolism</subject><subject>Phospholipase D1</subject><subject>Secretion</subject><subject>Secretory vesicles</subject><subject>Secretory Vesicles - genetics</subject><subject>Secretory Vesicles - metabolism</subject><subject>Vesicles</subject><issn>2212-4926</issn><issn>2212-4934</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1u1DAUhSMEolXpEyAhS2xgkcF_cZwFi6q0FGkkWMDacpzrGQ-JHeyk0rwJj4szKbNggTe27v3O8bVPUbwmeEMwER8Om0PrQtxQTEmuYMn5s-KSUkJL3jD-_Hym4qK4TumA8xJZyauXxQXjshZM8svi97d9SOM-9G7UCdAnUu7AQ9QTdGg8tfTkOmeQNq5DQ-jmPvcSSmAiTCEe0S5qP_eApqitdean8ztkYxhQnm_xSi6hKSAThhF80icN-C6Y4xSWnvPIwxzDqRadB2Sg79Or4oXVfYLrp_2q-HF_9_32odx-_fzl9mZbGi7EVFLBCLO4Y4LVrGqslA2uW04EqZuGC4tpZRjmVgpR1xp4TduWtVbX2Oqu4cCuiver7173aoxu0PGognbq4WarlhpmdV0R2jySzL5b2TGGXzOkSQ0uLdNqD2FOigoscVNRLjP69h_0EObo80syxXElJeM4U2ylTAwpRbDnCQhWS87qoE45qyVnteacVW-evOd2gO6s-ZtqBj6uAOSPe3QQVTIOvIHORTCT6oL77wV_ACZ-u3w</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Tanguy, Emeline</creator><creator>Wolf, Alexander</creator><creator>Wang, Qili</creator><creator>Chasserot-Golaz, Sylvette</creator><creator>Ory, Stéphane</creator><creator>Gasman, Stéphane</creator><creator>Vitale, Nicolas</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-4752-4907</orcidid><orcidid>https://orcid.org/0000-0003-4359-1157</orcidid></search><sort><creationdate>20220101</creationdate><title>Phospholipase D1-generated phosphatidic acid modulates secretory granule trafficking from biogenesis to compensatory endocytosis in neuroendocrine cells</title><author>Tanguy, Emeline ; Wolf, Alexander ; Wang, Qili ; Chasserot-Golaz, Sylvette ; Ory, Stéphane ; Gasman, Stéphane ; Vitale, Nicolas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-26313f0d3637359f88907b416179946f025c304f86677ae472bb3bfa70fad94e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biosynthesis</topic><topic>Catecholamine</topic><topic>Catecholamines</topic><topic>Cell culture</topic><topic>Confocal microscopy</topic><topic>Constituents</topic><topic>Docking</topic><topic>Dopamine</topic><topic>Dopamine D1 receptors</topic><topic>Dopamine β-monooxygenase</topic><topic>Electrochemistry</topic><topic>Electron microscopy</topic><topic>Endocytosis</topic><topic>Endocytosis - genetics</topic><topic>Exocytosis</topic><topic>Exocytosis - physiology</topic><topic>Fatty acid</topic><topic>Golgi apparatus</topic><topic>Granular materials</topic><topic>Homeostasis</topic><topic>Hormones</topic><topic>Humans</topic><topic>Hydroxylase</topic><topic>Internalization</topic><topic>Lecithin</topic><topic>Life Sciences</topic><topic>Lipids</topic><topic>Membranes</topic><topic>Microscopy</topic><topic>Neurobiology</topic><topic>Neuroendocrine Cells - metabolism</topic><topic>Neuroendocrine secretion</topic><topic>Neurons and Cognition</topic><topic>Neuropeptides</topic><topic>Neurotransmitters</topic><topic>Phosphatidic acid</topic><topic>Phosphatidic Acids - metabolism</topic><topic>Phosphatidylcholine</topic><topic>Phospholipase</topic><topic>Phospholipase D</topic><topic>Phospholipase D - genetics</topic><topic>Phospholipase D - metabolism</topic><topic>Phospholipase D1</topic><topic>Secretion</topic><topic>Secretory vesicles</topic><topic>Secretory Vesicles - genetics</topic><topic>Secretory Vesicles - metabolism</topic><topic>Vesicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tanguy, Emeline</creatorcontrib><creatorcontrib>Wolf, Alexander</creatorcontrib><creatorcontrib>Wang, Qili</creatorcontrib><creatorcontrib>Chasserot-Golaz, Sylvette</creatorcontrib><creatorcontrib>Ory, Stéphane</creatorcontrib><creatorcontrib>Gasman, Stéphane</creatorcontrib><creatorcontrib>Vitale, Nicolas</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Advances in biological regulation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tanguy, Emeline</au><au>Wolf, Alexander</au><au>Wang, Qili</au><au>Chasserot-Golaz, Sylvette</au><au>Ory, Stéphane</au><au>Gasman, Stéphane</au><au>Vitale, Nicolas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phospholipase D1-generated phosphatidic acid modulates secretory granule trafficking from biogenesis to compensatory endocytosis in neuroendocrine cells</atitle><jtitle>Advances in biological regulation</jtitle><addtitle>Adv Biol Regul</addtitle><date>2022-01-01</date><risdate>2022</risdate><volume>83</volume><spage>100844</spage><epage>100844</epage><pages>100844-100844</pages><artnum>100844</artnum><issn>2212-4926</issn><eissn>2212-4934</eissn><abstract>Calcium-regulated exocytosis is a multi-step process that allows specialized secretory cells to release informative molecules such as neurotransmitters, neuropeptides, and hormones for intercellular communication. The biogenesis of secretory vesicles from the Golgi cisternae is followed by their transport towards the cell periphery and their docking and fusion to the exocytic sites of the plasma membrane allowing release of vesicular content. Subsequent compensatory endocytosis of the protein and lipidic constituents of the vesicles maintains cell homeostasis. Despite the fact that lipids represent the majority of membrane constituents, little is known about their contribution to these processes. Using a combination of electrochemical measurement of single chromaffin cell catecholamine secretion and electron microscopy of roof-top membrane sheets associated with genetic, silencing and pharmacological approaches, we recently reported that diverse phosphatidic acid (PA) species regulates catecholamine release efficiency by controlling granule docking and fusion kinetics. The enzyme phospholipase D1 (PLD1), producing PA from phosphatidylcholine, seems to be the major responsible of these effects in this model. Here, we extended this work using spinning disk confocal microscopy showing that inhibition of PLD activity also reduced the velocity of granules undergoing a directed motion. Furthermore, a dopamine β-hydroxylase (DβH) internalization assay revealed that PA produced by PLD is required for an optimal recovery of vesicular membrane content by compensatory endocytosis. Thus, among numerous roles that have been attributed to PA our work gives core to the key regulatory role in secretion that has been proposed in different cell models. Few leads to explain these multiple functions of PA along the secretory pathway are discussed.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>34876384</pmid><doi>10.1016/j.jbior.2021.100844</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-4752-4907</orcidid><orcidid>https://orcid.org/0000-0003-4359-1157</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2212-4926
ispartof Advances in biological regulation, 2022-01, Vol.83, p.100844-100844, Article 100844
issn 2212-4926
2212-4934
language eng
recordid cdi_hal_primary_oai_HAL_hal_03775129v1
source MEDLINE; Alma/SFX Local Collection
subjects Biosynthesis
Catecholamine
Catecholamines
Cell culture
Confocal microscopy
Constituents
Docking
Dopamine
Dopamine D1 receptors
Dopamine β-monooxygenase
Electrochemistry
Electron microscopy
Endocytosis
Endocytosis - genetics
Exocytosis
Exocytosis - physiology
Fatty acid
Golgi apparatus
Granular materials
Homeostasis
Hormones
Humans
Hydroxylase
Internalization
Lecithin
Life Sciences
Lipids
Membranes
Microscopy
Neurobiology
Neuroendocrine Cells - metabolism
Neuroendocrine secretion
Neurons and Cognition
Neuropeptides
Neurotransmitters
Phosphatidic acid
Phosphatidic Acids - metabolism
Phosphatidylcholine
Phospholipase
Phospholipase D
Phospholipase D - genetics
Phospholipase D - metabolism
Phospholipase D1
Secretion
Secretory vesicles
Secretory Vesicles - genetics
Secretory Vesicles - metabolism
Vesicles
title Phospholipase D1-generated phosphatidic acid modulates secretory granule trafficking from biogenesis to compensatory endocytosis in neuroendocrine cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T00%3A48%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phospholipase%20D1-generated%20phosphatidic%20acid%20modulates%20secretory%20granule%20trafficking%20from%20biogenesis%20to%20compensatory%20endocytosis%20in%20neuroendocrine%20cells&rft.jtitle=Advances%20in%20biological%20regulation&rft.au=Tanguy,%20Emeline&rft.date=2022-01-01&rft.volume=83&rft.spage=100844&rft.epage=100844&rft.pages=100844-100844&rft.artnum=100844&rft.issn=2212-4926&rft.eissn=2212-4934&rft_id=info:doi/10.1016/j.jbior.2021.100844&rft_dat=%3Cproquest_hal_p%3E2640588340%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2640588340&rft_id=info:pmid/34876384&rft_els_id=S2212492621000609&rfr_iscdi=true