Stability of hexagonal pattern in Rayleigh–Bénard convection for thermodependent shear-thinning fluids

Stability of hexagonal patterns in Rayleigh–Bénard convection for shear-thinning fluids with temperature-dependent viscosity is studied in the framework of amplitude equations. The rheological behaviour of the fluid is described by the Carreau model and the relationship between the viscosity and the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2020-12, Vol.905, Article A33
Hauptverfasser: Varé, T., Nouar, C., Métivier, C., Bouteraa, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Journal of fluid mechanics
container_volume 905
creator Varé, T.
Nouar, C.
Métivier, C.
Bouteraa, M.
description Stability of hexagonal patterns in Rayleigh–Bénard convection for shear-thinning fluids with temperature-dependent viscosity is studied in the framework of amplitude equations. The rheological behaviour of the fluid is described by the Carreau model and the relationship between the viscosity and the temperature is of exponential type. Ginzburg–Landau equations including non-variational quadratic spatial terms are derived explicitly from the basic hydrodynamic equations using a multiple scale expansion. The stability of hexagonal patterns towards spatially uniform disturbances (amplitude instabilities) and to long wavelength perturbations (phase instabilities) is analysed for different values of the shear-thinning degree $\alpha$ of the fluid and the ratio $r$ of the viscosities between the top and bottom walls. It is shown that the amplitude stability domain shrinks with increasing shear-thinning effects and increases with increasing the viscosity ratio $r$. Concerning the phase stability domain which confines the range of stable wavenumbers, it is shown that it is closed for low values of $r$ and becomes open and asymmetric for moderate values of $r$. With increasing shear-thinning effects, the phase stability domain becomes more decentred towards higher values of the wavenumber. Beyond the stability limits, two different modes go unstable: longitudinal and transverse modes. For the parameters considered here, the longitudinal mode is relevant only in a small region close to the onset. The nonlinear evolution of the transverse phase instability is investigated by numerical integration of amplitude equations. The hexagon–roll transition triggered by the transverse phase instability for sufficiently large reduced Rayleigh number $\epsilon$ is illustrated.
doi_str_mv 10.1017/jfm.2020.766
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03773791v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2020_766</cupid><sourcerecordid>2457216279</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-dfdb2afd01e6400e35f30fff6c45184ae837e10b9bfc24c2db2d1642c572f4ce3</originalsourceid><addsrcrecordid>eNptkE1qGzEUgEVpoG7SXQ8g6CrQcZ408iizTELzA4ZCkq6FRnryyIwlR5JDvOsdeoqeIzfJSTLGId109eDxvQ_eR8hXBlMGTJ4s3WrKgcNUNs0HMmGiaSvZiNlHMgHgvGKMwyfyOeclAKuhlRPi74ru_ODLlkZHe3zSixj0QNe6FEyB-kBv9XZAv-hffv85f_4bdLLUxPCIpvgYqIuJlh7TKlpcY7AYCs096lSV3ofgw4K6YeNtPiIHTg8Zv7zNQ_Lr8sf9xXU1_3l1c3E2r4wQolTW2Y5rZ4FhIwCwnrkanHONETN2KjSe1hIZdG3nDBeGj7RljeBmJrkTButDcrz39npQ6-RXOm1V1F5dn83Vbge1lLVs2SMb2W97dp3iwwZzUcu4SeP_WXExClnDZTtS3_eUSTHnhO5dy0DtwqsxvNqFV2P4EZ--4XrVJW8X-M_634NXMyqIoA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2457216279</pqid></control><display><type>article</type><title>Stability of hexagonal pattern in Rayleigh–Bénard convection for thermodependent shear-thinning fluids</title><source>Cambridge Journals</source><creator>Varé, T. ; Nouar, C. ; Métivier, C. ; Bouteraa, M.</creator><creatorcontrib>Varé, T. ; Nouar, C. ; Métivier, C. ; Bouteraa, M.</creatorcontrib><description>Stability of hexagonal patterns in Rayleigh–Bénard convection for shear-thinning fluids with temperature-dependent viscosity is studied in the framework of amplitude equations. The rheological behaviour of the fluid is described by the Carreau model and the relationship between the viscosity and the temperature is of exponential type. Ginzburg–Landau equations including non-variational quadratic spatial terms are derived explicitly from the basic hydrodynamic equations using a multiple scale expansion. The stability of hexagonal patterns towards spatially uniform disturbances (amplitude instabilities) and to long wavelength perturbations (phase instabilities) is analysed for different values of the shear-thinning degree $\alpha$ of the fluid and the ratio $r$ of the viscosities between the top and bottom walls. It is shown that the amplitude stability domain shrinks with increasing shear-thinning effects and increases with increasing the viscosity ratio $r$. Concerning the phase stability domain which confines the range of stable wavenumbers, it is shown that it is closed for low values of $r$ and becomes open and asymmetric for moderate values of $r$. With increasing shear-thinning effects, the phase stability domain becomes more decentred towards higher values of the wavenumber. Beyond the stability limits, two different modes go unstable: longitudinal and transverse modes. For the parameters considered here, the longitudinal mode is relevant only in a small region close to the onset. The nonlinear evolution of the transverse phase instability is investigated by numerical integration of amplitude equations. The hexagon–roll transition triggered by the transverse phase instability for sufficiently large reduced Rayleigh number $\epsilon$ is illustrated.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2020.766</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Amplitude ; Amplitudes ; Asymmetry ; Boundary conditions ; Computational fluid dynamics ; Convection ; Domains ; Engineering Sciences ; Fluid mechanics ; Fluids ; Fluids mechanics ; Hydrodynamic equations ; Hydrodynamics ; JFM Papers ; Landau-Ginzburg equations ; Mechanics ; Numerical integration ; Phase stability ; Rayleigh number ; Rayleigh-Benard convection ; Rheological properties ; Shear ; Shear thinning (liquids) ; Symmetry ; Temperature ; Temperature dependence ; Thinning ; Viscosity ; Viscosity ratio ; Wavelength ; Wavelengths</subject><ispartof>Journal of fluid mechanics, 2020-12, Vol.905, Article A33</ispartof><rights>The Author(s), 2020. Published by Cambridge University Press</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-dfdb2afd01e6400e35f30fff6c45184ae837e10b9bfc24c2db2d1642c572f4ce3</citedby><cites>FETCH-LOGICAL-c444t-dfdb2afd01e6400e35f30fff6c45184ae837e10b9bfc24c2db2d1642c572f4ce3</cites><orcidid>0000-0003-4436-7878 ; 0000-0002-0457-6694</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112020007661/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,230,314,776,780,881,27901,27902,55603</link.rule.ids><backlink>$$Uhttps://cnrs.hal.science/hal-03773791$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Varé, T.</creatorcontrib><creatorcontrib>Nouar, C.</creatorcontrib><creatorcontrib>Métivier, C.</creatorcontrib><creatorcontrib>Bouteraa, M.</creatorcontrib><title>Stability of hexagonal pattern in Rayleigh–Bénard convection for thermodependent shear-thinning fluids</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>Stability of hexagonal patterns in Rayleigh–Bénard convection for shear-thinning fluids with temperature-dependent viscosity is studied in the framework of amplitude equations. The rheological behaviour of the fluid is described by the Carreau model and the relationship between the viscosity and the temperature is of exponential type. Ginzburg–Landau equations including non-variational quadratic spatial terms are derived explicitly from the basic hydrodynamic equations using a multiple scale expansion. The stability of hexagonal patterns towards spatially uniform disturbances (amplitude instabilities) and to long wavelength perturbations (phase instabilities) is analysed for different values of the shear-thinning degree $\alpha$ of the fluid and the ratio $r$ of the viscosities between the top and bottom walls. It is shown that the amplitude stability domain shrinks with increasing shear-thinning effects and increases with increasing the viscosity ratio $r$. Concerning the phase stability domain which confines the range of stable wavenumbers, it is shown that it is closed for low values of $r$ and becomes open and asymmetric for moderate values of $r$. With increasing shear-thinning effects, the phase stability domain becomes more decentred towards higher values of the wavenumber. Beyond the stability limits, two different modes go unstable: longitudinal and transverse modes. For the parameters considered here, the longitudinal mode is relevant only in a small region close to the onset. The nonlinear evolution of the transverse phase instability is investigated by numerical integration of amplitude equations. The hexagon–roll transition triggered by the transverse phase instability for sufficiently large reduced Rayleigh number $\epsilon$ is illustrated.</description><subject>Amplitude</subject><subject>Amplitudes</subject><subject>Asymmetry</subject><subject>Boundary conditions</subject><subject>Computational fluid dynamics</subject><subject>Convection</subject><subject>Domains</subject><subject>Engineering Sciences</subject><subject>Fluid mechanics</subject><subject>Fluids</subject><subject>Fluids mechanics</subject><subject>Hydrodynamic equations</subject><subject>Hydrodynamics</subject><subject>JFM Papers</subject><subject>Landau-Ginzburg equations</subject><subject>Mechanics</subject><subject>Numerical integration</subject><subject>Phase stability</subject><subject>Rayleigh number</subject><subject>Rayleigh-Benard convection</subject><subject>Rheological properties</subject><subject>Shear</subject><subject>Shear thinning (liquids)</subject><subject>Symmetry</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>Thinning</subject><subject>Viscosity</subject><subject>Viscosity ratio</subject><subject>Wavelength</subject><subject>Wavelengths</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkE1qGzEUgEVpoG7SXQ8g6CrQcZ408iizTELzA4ZCkq6FRnryyIwlR5JDvOsdeoqeIzfJSTLGId109eDxvQ_eR8hXBlMGTJ4s3WrKgcNUNs0HMmGiaSvZiNlHMgHgvGKMwyfyOeclAKuhlRPi74ru_ODLlkZHe3zSixj0QNe6FEyB-kBv9XZAv-hffv85f_4bdLLUxPCIpvgYqIuJlh7TKlpcY7AYCs096lSV3ofgw4K6YeNtPiIHTg8Zv7zNQ_Lr8sf9xXU1_3l1c3E2r4wQolTW2Y5rZ4FhIwCwnrkanHONETN2KjSe1hIZdG3nDBeGj7RljeBmJrkTButDcrz39npQ6-RXOm1V1F5dn83Vbge1lLVs2SMb2W97dp3iwwZzUcu4SeP_WXExClnDZTtS3_eUSTHnhO5dy0DtwqsxvNqFV2P4EZ--4XrVJW8X-M_634NXMyqIoA</recordid><startdate>20201225</startdate><enddate>20201225</enddate><creator>Varé, T.</creator><creator>Nouar, C.</creator><creator>Métivier, C.</creator><creator>Bouteraa, M.</creator><general>Cambridge University Press</general><general>Cambridge University Press (CUP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-4436-7878</orcidid><orcidid>https://orcid.org/0000-0002-0457-6694</orcidid></search><sort><creationdate>20201225</creationdate><title>Stability of hexagonal pattern in Rayleigh–Bénard convection for thermodependent shear-thinning fluids</title><author>Varé, T. ; Nouar, C. ; Métivier, C. ; Bouteraa, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-dfdb2afd01e6400e35f30fff6c45184ae837e10b9bfc24c2db2d1642c572f4ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amplitude</topic><topic>Amplitudes</topic><topic>Asymmetry</topic><topic>Boundary conditions</topic><topic>Computational fluid dynamics</topic><topic>Convection</topic><topic>Domains</topic><topic>Engineering Sciences</topic><topic>Fluid mechanics</topic><topic>Fluids</topic><topic>Fluids mechanics</topic><topic>Hydrodynamic equations</topic><topic>Hydrodynamics</topic><topic>JFM Papers</topic><topic>Landau-Ginzburg equations</topic><topic>Mechanics</topic><topic>Numerical integration</topic><topic>Phase stability</topic><topic>Rayleigh number</topic><topic>Rayleigh-Benard convection</topic><topic>Rheological properties</topic><topic>Shear</topic><topic>Shear thinning (liquids)</topic><topic>Symmetry</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>Thinning</topic><topic>Viscosity</topic><topic>Viscosity ratio</topic><topic>Wavelength</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Varé, T.</creatorcontrib><creatorcontrib>Nouar, C.</creatorcontrib><creatorcontrib>Métivier, C.</creatorcontrib><creatorcontrib>Bouteraa, M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Varé, T.</au><au>Nouar, C.</au><au>Métivier, C.</au><au>Bouteraa, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability of hexagonal pattern in Rayleigh–Bénard convection for thermodependent shear-thinning fluids</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2020-12-25</date><risdate>2020</risdate><volume>905</volume><artnum>A33</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>Stability of hexagonal patterns in Rayleigh–Bénard convection for shear-thinning fluids with temperature-dependent viscosity is studied in the framework of amplitude equations. The rheological behaviour of the fluid is described by the Carreau model and the relationship between the viscosity and the temperature is of exponential type. Ginzburg–Landau equations including non-variational quadratic spatial terms are derived explicitly from the basic hydrodynamic equations using a multiple scale expansion. The stability of hexagonal patterns towards spatially uniform disturbances (amplitude instabilities) and to long wavelength perturbations (phase instabilities) is analysed for different values of the shear-thinning degree $\alpha$ of the fluid and the ratio $r$ of the viscosities between the top and bottom walls. It is shown that the amplitude stability domain shrinks with increasing shear-thinning effects and increases with increasing the viscosity ratio $r$. Concerning the phase stability domain which confines the range of stable wavenumbers, it is shown that it is closed for low values of $r$ and becomes open and asymmetric for moderate values of $r$. With increasing shear-thinning effects, the phase stability domain becomes more decentred towards higher values of the wavenumber. Beyond the stability limits, two different modes go unstable: longitudinal and transverse modes. For the parameters considered here, the longitudinal mode is relevant only in a small region close to the onset. The nonlinear evolution of the transverse phase instability is investigated by numerical integration of amplitude equations. The hexagon–roll transition triggered by the transverse phase instability for sufficiently large reduced Rayleigh number $\epsilon$ is illustrated.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2020.766</doi><tpages>42</tpages><orcidid>https://orcid.org/0000-0003-4436-7878</orcidid><orcidid>https://orcid.org/0000-0002-0457-6694</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2020-12, Vol.905, Article A33
issn 0022-1120
1469-7645
language eng
recordid cdi_hal_primary_oai_HAL_hal_03773791v1
source Cambridge Journals
subjects Amplitude
Amplitudes
Asymmetry
Boundary conditions
Computational fluid dynamics
Convection
Domains
Engineering Sciences
Fluid mechanics
Fluids
Fluids mechanics
Hydrodynamic equations
Hydrodynamics
JFM Papers
Landau-Ginzburg equations
Mechanics
Numerical integration
Phase stability
Rayleigh number
Rayleigh-Benard convection
Rheological properties
Shear
Shear thinning (liquids)
Symmetry
Temperature
Temperature dependence
Thinning
Viscosity
Viscosity ratio
Wavelength
Wavelengths
title Stability of hexagonal pattern in Rayleigh–Bénard convection for thermodependent shear-thinning fluids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T03%3A50%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20of%20hexagonal%20pattern%20in%20Rayleigh%E2%80%93B%C3%A9nard%20convection%20for%20thermodependent%20shear-thinning%20fluids&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Var%C3%A9,%20T.&rft.date=2020-12-25&rft.volume=905&rft.artnum=A33&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2020.766&rft_dat=%3Cproquest_hal_p%3E2457216279%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2457216279&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2020_766&rfr_iscdi=true