Giant effective Zeeman splitting in a monolayer semiconductor realized by spin-selective strong light–matter coupling
Strong coupling between light and the fundamental excitations of a two-dimensional electron gas (2DEG) is of foundational importance both to pure physics and to the understanding and development of future photonic nanotechnologies 1 – 7 . Here we study the relationship between spin polarization of a...
Gespeichert in:
Veröffentlicht in: | Nature photonics 2022-09, Vol.16 (9), p.632-636 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 636 |
---|---|
container_issue | 9 |
container_start_page | 632 |
container_title | Nature photonics |
container_volume | 16 |
creator | Lyons, T. P. Gillard, D. J. Leblanc, C. Puebla, J. Solnyshkov, D. D. Klompmaker, L. Akimov, I. A. Louca, C. Muduli, P. Genco, A. Bayer, M. Otani, Y. Malpuech, G. Tartakovskii, A. I. |
description | Strong coupling between light and the fundamental excitations of a two-dimensional electron gas (2DEG) is of foundational importance both to pure physics and to the understanding and development of future photonic nanotechnologies
1
–
7
. Here we study the relationship between spin polarization of a 2DEG in a monolayer semiconductor, MoSe
2
, and light–matter interactions modified by a zero-dimensional optical microcavity. We find pronounced spin-susceptibility of the 2DEG to simultaneously enhance and suppress trion-polariton formation in opposite photon helicities. This leads to observation of a giant effective valley Zeeman splitting for trion-polaritons (
g
-factor of >20), exceeding the purely trionic splitting by over five times. Going further, we observe clear effective optical nonlinearity arising from the highly nonlinear behaviour of the valley-specific strong light–matter coupling regime, and allowing all-optical tuning of the polaritonic Zeeman splitting from 4 meV to >10 meV. Our experiments lay the groundwork for engineering topological phases with true unidirectionality in monolayer semiconductors, accompanied by giant effective photonic nonlinearities rooted in many-body exciton–electron correlations.
Researchers show spin-susceptibility in monolayer MoSe
2
and demonstrate giant effective valley Zeeman splitting and nonlinearity for trion-polaritons. |
doi_str_mv | 10.1038/s41566-022-01025-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03765385v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2707109916</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-457985e74f464bc93bb5f4aa03c2a7c6149e9288ad7c13a3e34944105d358ad33</originalsourceid><addsrcrecordid>eNp9kbtKBDEUhgdR8PoCVgEri9FcZ5JSRFdhwUYbm5DNnlkjM8maZJW18h18Q5_E6Ih2Vudw-L-PA39VHRJ8QjCTp4kT0TQ1prTGBFNRy41qh7Rc1Vwqtvm7S7Fd7ab0iLFgitKd6mXijM8Iug5sds-A7gEG41Fa9i5n5xfIeWTQEHzozRoiSjA4G_x8ZXOIKILp3SvM0WxdEOfrBP2PKOUYCt67xUP-eHsfTM4Ft2FVzH6xX211pk9w8DP3qrvLi9vzq3p6M7k-P5vWlhOVay5aJQW0vOMNn1nFZjPRcWMws9S0tiFcgaJSmnlrCTMMGFecEyzmTJQjY3vV8eh9ML1eRjeYuNbBOH11NtVfN8zaRjApnknJHo3ZZQxPK0hZP4ZV9OU9TVvcEqwUaUqKjikbQ0oRul8twfqrDD2WoUsZ-rsMLQvERiiVsF9A_FP_Q30CpX-Ozg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2707109916</pqid></control><display><type>article</type><title>Giant effective Zeeman splitting in a monolayer semiconductor realized by spin-selective strong light–matter coupling</title><source>Springer Nature - Complete Springer Journals</source><source>Nature</source><creator>Lyons, T. P. ; Gillard, D. J. ; Leblanc, C. ; Puebla, J. ; Solnyshkov, D. D. ; Klompmaker, L. ; Akimov, I. A. ; Louca, C. ; Muduli, P. ; Genco, A. ; Bayer, M. ; Otani, Y. ; Malpuech, G. ; Tartakovskii, A. I.</creator><creatorcontrib>Lyons, T. P. ; Gillard, D. J. ; Leblanc, C. ; Puebla, J. ; Solnyshkov, D. D. ; Klompmaker, L. ; Akimov, I. A. ; Louca, C. ; Muduli, P. ; Genco, A. ; Bayer, M. ; Otani, Y. ; Malpuech, G. ; Tartakovskii, A. I.</creatorcontrib><description>Strong coupling between light and the fundamental excitations of a two-dimensional electron gas (2DEG) is of foundational importance both to pure physics and to the understanding and development of future photonic nanotechnologies
1
–
7
. Here we study the relationship between spin polarization of a 2DEG in a monolayer semiconductor, MoSe
2
, and light–matter interactions modified by a zero-dimensional optical microcavity. We find pronounced spin-susceptibility of the 2DEG to simultaneously enhance and suppress trion-polariton formation in opposite photon helicities. This leads to observation of a giant effective valley Zeeman splitting for trion-polaritons (
g
-factor of >20), exceeding the purely trionic splitting by over five times. Going further, we observe clear effective optical nonlinearity arising from the highly nonlinear behaviour of the valley-specific strong light–matter coupling regime, and allowing all-optical tuning of the polaritonic Zeeman splitting from 4 meV to >10 meV. Our experiments lay the groundwork for engineering topological phases with true unidirectionality in monolayer semiconductors, accompanied by giant effective photonic nonlinearities rooted in many-body exciton–electron correlations.
Researchers show spin-susceptibility in monolayer MoSe
2
and demonstrate giant effective valley Zeeman splitting and nonlinearity for trion-polaritons.</description><identifier>ISSN: 1749-4885</identifier><identifier>EISSN: 1749-4893</identifier><identifier>DOI: 10.1038/s41566-022-01025-8</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/357/918/1054 ; 639/624/399/1097 ; 639/766/400/2797 ; 639/925/918/1054 ; Applied and Technical Physics ; Coupling ; Electron gas ; Electron spin ; Excitons ; Letter ; Light ; Magnetic fields ; Molybdenum compounds ; Monolayers ; Nanotechnology ; Nonlinear systems ; Nonlinearity ; Photonics ; Physics ; Physics and Astronomy ; Polaritons ; Polarization (spin alignment) ; Quantum Physics ; Splitting ; Trions ; Valleys ; Zeeman effect</subject><ispartof>Nature photonics, 2022-09, Vol.16 (9), p.632-636</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2022.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-457985e74f464bc93bb5f4aa03c2a7c6149e9288ad7c13a3e34944105d358ad33</citedby><cites>FETCH-LOGICAL-c419t-457985e74f464bc93bb5f4aa03c2a7c6149e9288ad7c13a3e34944105d358ad33</cites><orcidid>0000-0002-0893-5949 ; 0000-0001-5569-7851 ; 0000-0002-4292-7205 ; 0000-0002-1292-2614 ; 0000-0001-8008-1493 ; 0000-0002-5084-0783 ; 0000-0001-8568-9879 ; 0000-0002-4169-5510 ; 0000-0002-4364-5672 ; 0000-0002-2035-2324 ; 0000-0002-2849-7667 ; 0000-0002-2506-759X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41566-022-01025-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41566-022-01025-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03765385$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lyons, T. P.</creatorcontrib><creatorcontrib>Gillard, D. J.</creatorcontrib><creatorcontrib>Leblanc, C.</creatorcontrib><creatorcontrib>Puebla, J.</creatorcontrib><creatorcontrib>Solnyshkov, D. D.</creatorcontrib><creatorcontrib>Klompmaker, L.</creatorcontrib><creatorcontrib>Akimov, I. A.</creatorcontrib><creatorcontrib>Louca, C.</creatorcontrib><creatorcontrib>Muduli, P.</creatorcontrib><creatorcontrib>Genco, A.</creatorcontrib><creatorcontrib>Bayer, M.</creatorcontrib><creatorcontrib>Otani, Y.</creatorcontrib><creatorcontrib>Malpuech, G.</creatorcontrib><creatorcontrib>Tartakovskii, A. I.</creatorcontrib><title>Giant effective Zeeman splitting in a monolayer semiconductor realized by spin-selective strong light–matter coupling</title><title>Nature photonics</title><addtitle>Nat. Photon</addtitle><description>Strong coupling between light and the fundamental excitations of a two-dimensional electron gas (2DEG) is of foundational importance both to pure physics and to the understanding and development of future photonic nanotechnologies
1
–
7
. Here we study the relationship between spin polarization of a 2DEG in a monolayer semiconductor, MoSe
2
, and light–matter interactions modified by a zero-dimensional optical microcavity. We find pronounced spin-susceptibility of the 2DEG to simultaneously enhance and suppress trion-polariton formation in opposite photon helicities. This leads to observation of a giant effective valley Zeeman splitting for trion-polaritons (
g
-factor of >20), exceeding the purely trionic splitting by over five times. Going further, we observe clear effective optical nonlinearity arising from the highly nonlinear behaviour of the valley-specific strong light–matter coupling regime, and allowing all-optical tuning of the polaritonic Zeeman splitting from 4 meV to >10 meV. Our experiments lay the groundwork for engineering topological phases with true unidirectionality in monolayer semiconductors, accompanied by giant effective photonic nonlinearities rooted in many-body exciton–electron correlations.
Researchers show spin-susceptibility in monolayer MoSe
2
and demonstrate giant effective valley Zeeman splitting and nonlinearity for trion-polaritons.</description><subject>639/301/357/918/1054</subject><subject>639/624/399/1097</subject><subject>639/766/400/2797</subject><subject>639/925/918/1054</subject><subject>Applied and Technical Physics</subject><subject>Coupling</subject><subject>Electron gas</subject><subject>Electron spin</subject><subject>Excitons</subject><subject>Letter</subject><subject>Light</subject><subject>Magnetic fields</subject><subject>Molybdenum compounds</subject><subject>Monolayers</subject><subject>Nanotechnology</subject><subject>Nonlinear systems</subject><subject>Nonlinearity</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polaritons</subject><subject>Polarization (spin alignment)</subject><subject>Quantum Physics</subject><subject>Splitting</subject><subject>Trions</subject><subject>Valleys</subject><subject>Zeeman effect</subject><issn>1749-4885</issn><issn>1749-4893</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kbtKBDEUhgdR8PoCVgEri9FcZ5JSRFdhwUYbm5DNnlkjM8maZJW18h18Q5_E6Ih2Vudw-L-PA39VHRJ8QjCTp4kT0TQ1prTGBFNRy41qh7Rc1Vwqtvm7S7Fd7ab0iLFgitKd6mXijM8Iug5sds-A7gEG41Fa9i5n5xfIeWTQEHzozRoiSjA4G_x8ZXOIKILp3SvM0WxdEOfrBP2PKOUYCt67xUP-eHsfTM4Ft2FVzH6xX211pk9w8DP3qrvLi9vzq3p6M7k-P5vWlhOVay5aJQW0vOMNn1nFZjPRcWMws9S0tiFcgaJSmnlrCTMMGFecEyzmTJQjY3vV8eh9ML1eRjeYuNbBOH11NtVfN8zaRjApnknJHo3ZZQxPK0hZP4ZV9OU9TVvcEqwUaUqKjikbQ0oRul8twfqrDD2WoUsZ-rsMLQvERiiVsF9A_FP_Q30CpX-Ozg</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Lyons, T. P.</creator><creator>Gillard, D. J.</creator><creator>Leblanc, C.</creator><creator>Puebla, J.</creator><creator>Solnyshkov, D. D.</creator><creator>Klompmaker, L.</creator><creator>Akimov, I. A.</creator><creator>Louca, C.</creator><creator>Muduli, P.</creator><creator>Genco, A.</creator><creator>Bayer, M.</creator><creator>Otani, Y.</creator><creator>Malpuech, G.</creator><creator>Tartakovskii, A. I.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>LK8</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-0893-5949</orcidid><orcidid>https://orcid.org/0000-0001-5569-7851</orcidid><orcidid>https://orcid.org/0000-0002-4292-7205</orcidid><orcidid>https://orcid.org/0000-0002-1292-2614</orcidid><orcidid>https://orcid.org/0000-0001-8008-1493</orcidid><orcidid>https://orcid.org/0000-0002-5084-0783</orcidid><orcidid>https://orcid.org/0000-0001-8568-9879</orcidid><orcidid>https://orcid.org/0000-0002-4169-5510</orcidid><orcidid>https://orcid.org/0000-0002-4364-5672</orcidid><orcidid>https://orcid.org/0000-0002-2035-2324</orcidid><orcidid>https://orcid.org/0000-0002-2849-7667</orcidid><orcidid>https://orcid.org/0000-0002-2506-759X</orcidid></search><sort><creationdate>20220901</creationdate><title>Giant effective Zeeman splitting in a monolayer semiconductor realized by spin-selective strong light–matter coupling</title><author>Lyons, T. P. ; Gillard, D. J. ; Leblanc, C. ; Puebla, J. ; Solnyshkov, D. D. ; Klompmaker, L. ; Akimov, I. A. ; Louca, C. ; Muduli, P. ; Genco, A. ; Bayer, M. ; Otani, Y. ; Malpuech, G. ; Tartakovskii, A. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-457985e74f464bc93bb5f4aa03c2a7c6149e9288ad7c13a3e34944105d358ad33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>639/301/357/918/1054</topic><topic>639/624/399/1097</topic><topic>639/766/400/2797</topic><topic>639/925/918/1054</topic><topic>Applied and Technical Physics</topic><topic>Coupling</topic><topic>Electron gas</topic><topic>Electron spin</topic><topic>Excitons</topic><topic>Letter</topic><topic>Light</topic><topic>Magnetic fields</topic><topic>Molybdenum compounds</topic><topic>Monolayers</topic><topic>Nanotechnology</topic><topic>Nonlinear systems</topic><topic>Nonlinearity</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polaritons</topic><topic>Polarization (spin alignment)</topic><topic>Quantum Physics</topic><topic>Splitting</topic><topic>Trions</topic><topic>Valleys</topic><topic>Zeeman effect</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lyons, T. P.</creatorcontrib><creatorcontrib>Gillard, D. J.</creatorcontrib><creatorcontrib>Leblanc, C.</creatorcontrib><creatorcontrib>Puebla, J.</creatorcontrib><creatorcontrib>Solnyshkov, D. D.</creatorcontrib><creatorcontrib>Klompmaker, L.</creatorcontrib><creatorcontrib>Akimov, I. A.</creatorcontrib><creatorcontrib>Louca, C.</creatorcontrib><creatorcontrib>Muduli, P.</creatorcontrib><creatorcontrib>Genco, A.</creatorcontrib><creatorcontrib>Bayer, M.</creatorcontrib><creatorcontrib>Otani, Y.</creatorcontrib><creatorcontrib>Malpuech, G.</creatorcontrib><creatorcontrib>Tartakovskii, A. I.</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Nature photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lyons, T. P.</au><au>Gillard, D. J.</au><au>Leblanc, C.</au><au>Puebla, J.</au><au>Solnyshkov, D. D.</au><au>Klompmaker, L.</au><au>Akimov, I. A.</au><au>Louca, C.</au><au>Muduli, P.</au><au>Genco, A.</au><au>Bayer, M.</au><au>Otani, Y.</au><au>Malpuech, G.</au><au>Tartakovskii, A. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Giant effective Zeeman splitting in a monolayer semiconductor realized by spin-selective strong light–matter coupling</atitle><jtitle>Nature photonics</jtitle><stitle>Nat. Photon</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>16</volume><issue>9</issue><spage>632</spage><epage>636</epage><pages>632-636</pages><issn>1749-4885</issn><eissn>1749-4893</eissn><abstract>Strong coupling between light and the fundamental excitations of a two-dimensional electron gas (2DEG) is of foundational importance both to pure physics and to the understanding and development of future photonic nanotechnologies
1
–
7
. Here we study the relationship between spin polarization of a 2DEG in a monolayer semiconductor, MoSe
2
, and light–matter interactions modified by a zero-dimensional optical microcavity. We find pronounced spin-susceptibility of the 2DEG to simultaneously enhance and suppress trion-polariton formation in opposite photon helicities. This leads to observation of a giant effective valley Zeeman splitting for trion-polaritons (
g
-factor of >20), exceeding the purely trionic splitting by over five times. Going further, we observe clear effective optical nonlinearity arising from the highly nonlinear behaviour of the valley-specific strong light–matter coupling regime, and allowing all-optical tuning of the polaritonic Zeeman splitting from 4 meV to >10 meV. Our experiments lay the groundwork for engineering topological phases with true unidirectionality in monolayer semiconductors, accompanied by giant effective photonic nonlinearities rooted in many-body exciton–electron correlations.
Researchers show spin-susceptibility in monolayer MoSe
2
and demonstrate giant effective valley Zeeman splitting and nonlinearity for trion-polaritons.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41566-022-01025-8</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-0893-5949</orcidid><orcidid>https://orcid.org/0000-0001-5569-7851</orcidid><orcidid>https://orcid.org/0000-0002-4292-7205</orcidid><orcidid>https://orcid.org/0000-0002-1292-2614</orcidid><orcidid>https://orcid.org/0000-0001-8008-1493</orcidid><orcidid>https://orcid.org/0000-0002-5084-0783</orcidid><orcidid>https://orcid.org/0000-0001-8568-9879</orcidid><orcidid>https://orcid.org/0000-0002-4169-5510</orcidid><orcidid>https://orcid.org/0000-0002-4364-5672</orcidid><orcidid>https://orcid.org/0000-0002-2035-2324</orcidid><orcidid>https://orcid.org/0000-0002-2849-7667</orcidid><orcidid>https://orcid.org/0000-0002-2506-759X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1749-4885 |
ispartof | Nature photonics, 2022-09, Vol.16 (9), p.632-636 |
issn | 1749-4885 1749-4893 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03765385v1 |
source | Springer Nature - Complete Springer Journals; Nature |
subjects | 639/301/357/918/1054 639/624/399/1097 639/766/400/2797 639/925/918/1054 Applied and Technical Physics Coupling Electron gas Electron spin Excitons Letter Light Magnetic fields Molybdenum compounds Monolayers Nanotechnology Nonlinear systems Nonlinearity Photonics Physics Physics and Astronomy Polaritons Polarization (spin alignment) Quantum Physics Splitting Trions Valleys Zeeman effect |
title | Giant effective Zeeman splitting in a monolayer semiconductor realized by spin-selective strong light–matter coupling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T17%3A04%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Giant%20effective%20Zeeman%20splitting%20in%20a%20monolayer%20semiconductor%20realized%20by%20spin-selective%20strong%20light%E2%80%93matter%20coupling&rft.jtitle=Nature%20photonics&rft.au=Lyons,%20T.%20P.&rft.date=2022-09-01&rft.volume=16&rft.issue=9&rft.spage=632&rft.epage=636&rft.pages=632-636&rft.issn=1749-4885&rft.eissn=1749-4893&rft_id=info:doi/10.1038/s41566-022-01025-8&rft_dat=%3Cproquest_hal_p%3E2707109916%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2707109916&rft_id=info:pmid/&rfr_iscdi=true |