Global reference seismological data sets: multimode surface wave dispersion
SUMMARY Global variations in the propagation of fundamental-mode and overtone surface waves provide unique constraints on the low-frequency source properties and structure of the Earth’s upper mantle, transition zone and mid mantle. We construct a reference data set of multimode dispersion measureme...
Gespeichert in:
Veröffentlicht in: | Geophysical journal international 2022-03, Vol.228 (3), p.1808-1849 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1849 |
---|---|
container_issue | 3 |
container_start_page | 1808 |
container_title | Geophysical journal international |
container_volume | 228 |
creator | Moulik, P Lekic, V Romanowicz, B Ma, Z Schaeffer, A Ho, T Beucler, E Debayle, E Deuss, A Durand, S Ekström, G Lebedev, S Masters, G Priestley, K Ritsema, J Sigloch, K Trampert, J Dziewonski, A M |
description | SUMMARY
Global variations in the propagation of fundamental-mode and overtone surface waves provide unique constraints on the low-frequency source properties and structure of the Earth’s upper mantle, transition zone and mid mantle. We construct a reference data set of multimode dispersion measurements by reconciling large and diverse catalogues of Love-wave (49.65 million) and Rayleigh-wave dispersion (177.66 million) from eight groups worldwide. The reference data set summarizes measurements of dispersion of fundamental-mode surface waves and up to six overtone branches from 44 871 earthquakes recorded on 12 222 globally distributed seismographic stations. Dispersion curves are specified at a set of reference periods between 25 and 250 s to determine propagation-phase anomalies with respect to a reference Earth model. Our procedures for reconciling data sets include: (1) controlling quality and salvaging missing metadata; (2) identifying discrepant measurements and reasons for discrepancies; (3) equalizing geographic coverage by constructing summary rays for travel-time observations and (4) constructing phase velocity maps at various wavelengths with combination of data types to evaluate inter-dataset consistency. We retrieved missing station and earthquake metadata in several legacy compilations and codified scalable formats to facilitate reproducibility, easy storage and fast input/output on high-performance-computing systems. Outliers can be attributed to cycle skipping, station polarity issues or overtone interference at specific epicentral distances. By assessing inter-dataset consistency across similar paths, we empirically quantified uncertainties in traveltime measurements. More than 95 per cent measurements of fundamental-mode dispersion are internally consistent, but agreement deteriorates for overtones especially branches 5 and 6. Systematic discrepancies between raw phase anomalies from various techniques can be attributed to discrepant theoretical approximations, reference Earth models and processing schemes. Phase-velocity variations yielded by the inversion of the summary data set are highly correlated (R ≥ 0.8) with those from the quality-controlled contributing data sets. Long-wavelength variations in fundamental-mode dispersion (50–100 s) are largely independent of the measurement technique with high correlations extending up to degree ∼25. Agreement degrades with increasing branch number and period; highly correlated structure is found |
doi_str_mv | 10.1093/gji/ggab418 |
format | Article |
fullrecord | <record><control><sourceid>oup_TOX</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03765070v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/gji/ggab418</oup_id><sourcerecordid>10.1093/gji/ggab418</sourcerecordid><originalsourceid>FETCH-LOGICAL-a358t-fe75830695115cbbc1fc873caaef092c112aacb1353d9a6fe03ab9e32692b0ba3</originalsourceid><addsrcrecordid>eNp90EFLwzAUB_AgCs7pyS_QkyBSlzRN2ngbQzdx4EVht_CSJjWjXUbSTfz2Zmx49PTgz-89eH-Ebgl-JFjQSbt2k7YFVZL6DI0I5SwvSr46RyMsGM9ZiVeX6CrGNcakJGU9Qm_zzivosmCsCWajTRaNi73vfOt0yhsYIEVDfMr6XTe43jeJ7IKFRL9hb7LGxa0J0fnNNbqw0EVzc5pj9Pny_DFb5Mv3-etsusyBsnrIralYTTEXjBCmldLE6rqiGsBYLApNSAGgFaGMNgK4NZiCEoYWXBQKK6BjdH-8-wWd3AbXQ_iRHpxcTJfykGFacYYrvCfJPhytDj7G9OXfAsHy0JlMnclTZ0nfHbXfbf-Fv6D7bn0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Global reference seismological data sets: multimode surface wave dispersion</title><source>Oxford Journals Open Access Collection</source><creator>Moulik, P ; Lekic, V ; Romanowicz, B ; Ma, Z ; Schaeffer, A ; Ho, T ; Beucler, E ; Debayle, E ; Deuss, A ; Durand, S ; Ekström, G ; Lebedev, S ; Masters, G ; Priestley, K ; Ritsema, J ; Sigloch, K ; Trampert, J ; Dziewonski, A M</creator><creatorcontrib>Moulik, P ; Lekic, V ; Romanowicz, B ; Ma, Z ; Schaeffer, A ; Ho, T ; Beucler, E ; Debayle, E ; Deuss, A ; Durand, S ; Ekström, G ; Lebedev, S ; Masters, G ; Priestley, K ; Ritsema, J ; Sigloch, K ; Trampert, J ; Dziewonski, A M</creatorcontrib><description>SUMMARY
Global variations in the propagation of fundamental-mode and overtone surface waves provide unique constraints on the low-frequency source properties and structure of the Earth’s upper mantle, transition zone and mid mantle. We construct a reference data set of multimode dispersion measurements by reconciling large and diverse catalogues of Love-wave (49.65 million) and Rayleigh-wave dispersion (177.66 million) from eight groups worldwide. The reference data set summarizes measurements of dispersion of fundamental-mode surface waves and up to six overtone branches from 44 871 earthquakes recorded on 12 222 globally distributed seismographic stations. Dispersion curves are specified at a set of reference periods between 25 and 250 s to determine propagation-phase anomalies with respect to a reference Earth model. Our procedures for reconciling data sets include: (1) controlling quality and salvaging missing metadata; (2) identifying discrepant measurements and reasons for discrepancies; (3) equalizing geographic coverage by constructing summary rays for travel-time observations and (4) constructing phase velocity maps at various wavelengths with combination of data types to evaluate inter-dataset consistency. We retrieved missing station and earthquake metadata in several legacy compilations and codified scalable formats to facilitate reproducibility, easy storage and fast input/output on high-performance-computing systems. Outliers can be attributed to cycle skipping, station polarity issues or overtone interference at specific epicentral distances. By assessing inter-dataset consistency across similar paths, we empirically quantified uncertainties in traveltime measurements. More than 95 per cent measurements of fundamental-mode dispersion are internally consistent, but agreement deteriorates for overtones especially branches 5 and 6. Systematic discrepancies between raw phase anomalies from various techniques can be attributed to discrepant theoretical approximations, reference Earth models and processing schemes. Phase-velocity variations yielded by the inversion of the summary data set are highly correlated (R ≥ 0.8) with those from the quality-controlled contributing data sets. Long-wavelength variations in fundamental-mode dispersion (50–100 s) are largely independent of the measurement technique with high correlations extending up to degree ∼25. Agreement degrades with increasing branch number and period; highly correlated structure is found only up to degree ∼10 at longer periods (T > 150 s) and up to degree ∼8 for overtones. Only 2ζ azimuthal variations in phase velocity of fundamental-mode Rayleigh waves were required by the reference data set; maps of 2ζ azimuthal variations are highly consistent between catalogues ( R = 0.6–0.8). Reference data with uncertainties are useful for improving existing measurement techniques, validating models of interior structure, calculating teleseismic data corrections in local or multiscale investigations and developing a 3-D reference Earth model.</description><identifier>ISSN: 0956-540X</identifier><identifier>EISSN: 1365-246X</identifier><identifier>DOI: 10.1093/gji/ggab418</identifier><language>eng</language><publisher>Oxford University Press</publisher><subject>Earth Sciences ; Geophysics ; Sciences of the Universe</subject><ispartof>Geophysical journal international, 2022-03, Vol.228 (3), p.1808-1849</ispartof><rights>The Author(s) 2021. Published by Oxford University Press on behalf of The Royal Astronomical Society. 2021</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a358t-fe75830695115cbbc1fc873caaef092c112aacb1353d9a6fe03ab9e32692b0ba3</citedby><cites>FETCH-LOGICAL-a358t-fe75830695115cbbc1fc873caaef092c112aacb1353d9a6fe03ab9e32692b0ba3</cites><orcidid>0000-0003-0004-5009 ; 0000-0003-4774-2282 ; 0000-0001-6410-275X ; 0000-0002-9976-8938 ; 0000-0003-2605-4990 ; 0000-0002-5868-9491 ; 0000-0002-3548-272X ; 0000-0002-9876-4628</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,1604,27924,27925</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/gji/ggab418$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://hal.science/hal-03765070$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Moulik, P</creatorcontrib><creatorcontrib>Lekic, V</creatorcontrib><creatorcontrib>Romanowicz, B</creatorcontrib><creatorcontrib>Ma, Z</creatorcontrib><creatorcontrib>Schaeffer, A</creatorcontrib><creatorcontrib>Ho, T</creatorcontrib><creatorcontrib>Beucler, E</creatorcontrib><creatorcontrib>Debayle, E</creatorcontrib><creatorcontrib>Deuss, A</creatorcontrib><creatorcontrib>Durand, S</creatorcontrib><creatorcontrib>Ekström, G</creatorcontrib><creatorcontrib>Lebedev, S</creatorcontrib><creatorcontrib>Masters, G</creatorcontrib><creatorcontrib>Priestley, K</creatorcontrib><creatorcontrib>Ritsema, J</creatorcontrib><creatorcontrib>Sigloch, K</creatorcontrib><creatorcontrib>Trampert, J</creatorcontrib><creatorcontrib>Dziewonski, A M</creatorcontrib><title>Global reference seismological data sets: multimode surface wave dispersion</title><title>Geophysical journal international</title><description>SUMMARY
Global variations in the propagation of fundamental-mode and overtone surface waves provide unique constraints on the low-frequency source properties and structure of the Earth’s upper mantle, transition zone and mid mantle. We construct a reference data set of multimode dispersion measurements by reconciling large and diverse catalogues of Love-wave (49.65 million) and Rayleigh-wave dispersion (177.66 million) from eight groups worldwide. The reference data set summarizes measurements of dispersion of fundamental-mode surface waves and up to six overtone branches from 44 871 earthquakes recorded on 12 222 globally distributed seismographic stations. Dispersion curves are specified at a set of reference periods between 25 and 250 s to determine propagation-phase anomalies with respect to a reference Earth model. Our procedures for reconciling data sets include: (1) controlling quality and salvaging missing metadata; (2) identifying discrepant measurements and reasons for discrepancies; (3) equalizing geographic coverage by constructing summary rays for travel-time observations and (4) constructing phase velocity maps at various wavelengths with combination of data types to evaluate inter-dataset consistency. We retrieved missing station and earthquake metadata in several legacy compilations and codified scalable formats to facilitate reproducibility, easy storage and fast input/output on high-performance-computing systems. Outliers can be attributed to cycle skipping, station polarity issues or overtone interference at specific epicentral distances. By assessing inter-dataset consistency across similar paths, we empirically quantified uncertainties in traveltime measurements. More than 95 per cent measurements of fundamental-mode dispersion are internally consistent, but agreement deteriorates for overtones especially branches 5 and 6. Systematic discrepancies between raw phase anomalies from various techniques can be attributed to discrepant theoretical approximations, reference Earth models and processing schemes. Phase-velocity variations yielded by the inversion of the summary data set are highly correlated (R ≥ 0.8) with those from the quality-controlled contributing data sets. Long-wavelength variations in fundamental-mode dispersion (50–100 s) are largely independent of the measurement technique with high correlations extending up to degree ∼25. Agreement degrades with increasing branch number and period; highly correlated structure is found only up to degree ∼10 at longer periods (T > 150 s) and up to degree ∼8 for overtones. Only 2ζ azimuthal variations in phase velocity of fundamental-mode Rayleigh waves were required by the reference data set; maps of 2ζ azimuthal variations are highly consistent between catalogues ( R = 0.6–0.8). Reference data with uncertainties are useful for improving existing measurement techniques, validating models of interior structure, calculating teleseismic data corrections in local or multiscale investigations and developing a 3-D reference Earth model.</description><subject>Earth Sciences</subject><subject>Geophysics</subject><subject>Sciences of the Universe</subject><issn>0956-540X</issn><issn>1365-246X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp90EFLwzAUB_AgCs7pyS_QkyBSlzRN2ngbQzdx4EVht_CSJjWjXUbSTfz2Zmx49PTgz-89eH-Ebgl-JFjQSbt2k7YFVZL6DI0I5SwvSr46RyMsGM9ZiVeX6CrGNcakJGU9Qm_zzivosmCsCWajTRaNi73vfOt0yhsYIEVDfMr6XTe43jeJ7IKFRL9hb7LGxa0J0fnNNbqw0EVzc5pj9Pny_DFb5Mv3-etsusyBsnrIralYTTEXjBCmldLE6rqiGsBYLApNSAGgFaGMNgK4NZiCEoYWXBQKK6BjdH-8-wWd3AbXQ_iRHpxcTJfykGFacYYrvCfJPhytDj7G9OXfAsHy0JlMnclTZ0nfHbXfbf-Fv6D7bn0</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Moulik, P</creator><creator>Lekic, V</creator><creator>Romanowicz, B</creator><creator>Ma, Z</creator><creator>Schaeffer, A</creator><creator>Ho, T</creator><creator>Beucler, E</creator><creator>Debayle, E</creator><creator>Deuss, A</creator><creator>Durand, S</creator><creator>Ekström, G</creator><creator>Lebedev, S</creator><creator>Masters, G</creator><creator>Priestley, K</creator><creator>Ritsema, J</creator><creator>Sigloch, K</creator><creator>Trampert, J</creator><creator>Dziewonski, A M</creator><general>Oxford University Press</general><general>Oxford University Press (OUP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-0004-5009</orcidid><orcidid>https://orcid.org/0000-0003-4774-2282</orcidid><orcidid>https://orcid.org/0000-0001-6410-275X</orcidid><orcidid>https://orcid.org/0000-0002-9976-8938</orcidid><orcidid>https://orcid.org/0000-0003-2605-4990</orcidid><orcidid>https://orcid.org/0000-0002-5868-9491</orcidid><orcidid>https://orcid.org/0000-0002-3548-272X</orcidid><orcidid>https://orcid.org/0000-0002-9876-4628</orcidid></search><sort><creationdate>20220301</creationdate><title>Global reference seismological data sets: multimode surface wave dispersion</title><author>Moulik, P ; Lekic, V ; Romanowicz, B ; Ma, Z ; Schaeffer, A ; Ho, T ; Beucler, E ; Debayle, E ; Deuss, A ; Durand, S ; Ekström, G ; Lebedev, S ; Masters, G ; Priestley, K ; Ritsema, J ; Sigloch, K ; Trampert, J ; Dziewonski, A M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a358t-fe75830695115cbbc1fc873caaef092c112aacb1353d9a6fe03ab9e32692b0ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Earth Sciences</topic><topic>Geophysics</topic><topic>Sciences of the Universe</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moulik, P</creatorcontrib><creatorcontrib>Lekic, V</creatorcontrib><creatorcontrib>Romanowicz, B</creatorcontrib><creatorcontrib>Ma, Z</creatorcontrib><creatorcontrib>Schaeffer, A</creatorcontrib><creatorcontrib>Ho, T</creatorcontrib><creatorcontrib>Beucler, E</creatorcontrib><creatorcontrib>Debayle, E</creatorcontrib><creatorcontrib>Deuss, A</creatorcontrib><creatorcontrib>Durand, S</creatorcontrib><creatorcontrib>Ekström, G</creatorcontrib><creatorcontrib>Lebedev, S</creatorcontrib><creatorcontrib>Masters, G</creatorcontrib><creatorcontrib>Priestley, K</creatorcontrib><creatorcontrib>Ritsema, J</creatorcontrib><creatorcontrib>Sigloch, K</creatorcontrib><creatorcontrib>Trampert, J</creatorcontrib><creatorcontrib>Dziewonski, A M</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Geophysical journal international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Moulik, P</au><au>Lekic, V</au><au>Romanowicz, B</au><au>Ma, Z</au><au>Schaeffer, A</au><au>Ho, T</au><au>Beucler, E</au><au>Debayle, E</au><au>Deuss, A</au><au>Durand, S</au><au>Ekström, G</au><au>Lebedev, S</au><au>Masters, G</au><au>Priestley, K</au><au>Ritsema, J</au><au>Sigloch, K</au><au>Trampert, J</au><au>Dziewonski, A M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global reference seismological data sets: multimode surface wave dispersion</atitle><jtitle>Geophysical journal international</jtitle><date>2022-03-01</date><risdate>2022</risdate><volume>228</volume><issue>3</issue><spage>1808</spage><epage>1849</epage><pages>1808-1849</pages><issn>0956-540X</issn><eissn>1365-246X</eissn><abstract>SUMMARY
Global variations in the propagation of fundamental-mode and overtone surface waves provide unique constraints on the low-frequency source properties and structure of the Earth’s upper mantle, transition zone and mid mantle. We construct a reference data set of multimode dispersion measurements by reconciling large and diverse catalogues of Love-wave (49.65 million) and Rayleigh-wave dispersion (177.66 million) from eight groups worldwide. The reference data set summarizes measurements of dispersion of fundamental-mode surface waves and up to six overtone branches from 44 871 earthquakes recorded on 12 222 globally distributed seismographic stations. Dispersion curves are specified at a set of reference periods between 25 and 250 s to determine propagation-phase anomalies with respect to a reference Earth model. Our procedures for reconciling data sets include: (1) controlling quality and salvaging missing metadata; (2) identifying discrepant measurements and reasons for discrepancies; (3) equalizing geographic coverage by constructing summary rays for travel-time observations and (4) constructing phase velocity maps at various wavelengths with combination of data types to evaluate inter-dataset consistency. We retrieved missing station and earthquake metadata in several legacy compilations and codified scalable formats to facilitate reproducibility, easy storage and fast input/output on high-performance-computing systems. Outliers can be attributed to cycle skipping, station polarity issues or overtone interference at specific epicentral distances. By assessing inter-dataset consistency across similar paths, we empirically quantified uncertainties in traveltime measurements. More than 95 per cent measurements of fundamental-mode dispersion are internally consistent, but agreement deteriorates for overtones especially branches 5 and 6. Systematic discrepancies between raw phase anomalies from various techniques can be attributed to discrepant theoretical approximations, reference Earth models and processing schemes. Phase-velocity variations yielded by the inversion of the summary data set are highly correlated (R ≥ 0.8) with those from the quality-controlled contributing data sets. Long-wavelength variations in fundamental-mode dispersion (50–100 s) are largely independent of the measurement technique with high correlations extending up to degree ∼25. Agreement degrades with increasing branch number and period; highly correlated structure is found only up to degree ∼10 at longer periods (T > 150 s) and up to degree ∼8 for overtones. Only 2ζ azimuthal variations in phase velocity of fundamental-mode Rayleigh waves were required by the reference data set; maps of 2ζ azimuthal variations are highly consistent between catalogues ( R = 0.6–0.8). Reference data with uncertainties are useful for improving existing measurement techniques, validating models of interior structure, calculating teleseismic data corrections in local or multiscale investigations and developing a 3-D reference Earth model.</abstract><pub>Oxford University Press</pub><doi>10.1093/gji/ggab418</doi><tpages>42</tpages><orcidid>https://orcid.org/0000-0003-0004-5009</orcidid><orcidid>https://orcid.org/0000-0003-4774-2282</orcidid><orcidid>https://orcid.org/0000-0001-6410-275X</orcidid><orcidid>https://orcid.org/0000-0002-9976-8938</orcidid><orcidid>https://orcid.org/0000-0003-2605-4990</orcidid><orcidid>https://orcid.org/0000-0002-5868-9491</orcidid><orcidid>https://orcid.org/0000-0002-3548-272X</orcidid><orcidid>https://orcid.org/0000-0002-9876-4628</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0956-540X |
ispartof | Geophysical journal international, 2022-03, Vol.228 (3), p.1808-1849 |
issn | 0956-540X 1365-246X |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03765070v1 |
source | Oxford Journals Open Access Collection |
subjects | Earth Sciences Geophysics Sciences of the Universe |
title | Global reference seismological data sets: multimode surface wave dispersion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T19%3A23%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20reference%20seismological%20data%20sets:%20multimode%20surface%20wave%20dispersion&rft.jtitle=Geophysical%20journal%20international&rft.au=Moulik,%20P&rft.date=2022-03-01&rft.volume=228&rft.issue=3&rft.spage=1808&rft.epage=1849&rft.pages=1808-1849&rft.issn=0956-540X&rft.eissn=1365-246X&rft_id=info:doi/10.1093/gji/ggab418&rft_dat=%3Coup_TOX%3E10.1093/gji/ggab418%3C/oup_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/gji/ggab418&rfr_iscdi=true |