A singularity theorem for Einstein–Klein–Gordon theory
Hawking’s singularity theorem concerns matter obeying the strong energy condition (SEC), which means that all observers experience a nonnegative effective energy density (EED), thereby guaranteeing the timelike convergence property. However, there are models that do not satisfy the SEC and therefore...
Gespeichert in:
Veröffentlicht in: | General relativity and gravitation 2018-10, Vol.50 (10), p.1-24, Article 121 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 24 |
---|---|
container_issue | 10 |
container_start_page | 1 |
container_title | General relativity and gravitation |
container_volume | 50 |
creator | Brown, Peter J. Fewster, Christopher J. Kontou, Eleni-Alexandra |
description | Hawking’s singularity theorem concerns matter obeying the strong energy condition (SEC), which means that all observers experience a nonnegative effective energy density (EED), thereby guaranteeing the timelike convergence property. However, there are models that do not satisfy the SEC and therefore lie outside the scope of Hawking’s hypotheses, an important example being the massive Klein–Gordon field. Here we derive lower bounds on local averages of the EED for solutions to the Klein–Gordon equation, allowing nonzero mass and nonminimal coupling to the scalar curvature. The averages are taken along timelike geodesics or over spacetime volumes, and our bounds are valid for a range of coupling constants including both minimal and conformal coupling. Using methods developed by Fewster and Galloway, these lower bounds are applied to prove a Hawking-type singularity theorem for solutions to the Einstein–Klein–Gordon theory, asserting that solutions with sufficient initial contraction at a compact Cauchy surface will be future timelike geodesically incomplete. These results remain true in the presence of additional matter obeying both the strong and weak energy conditions. |
doi_str_mv | 10.1007/s10714-018-2446-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03760345v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2101035395</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-4c128daf810e534577c581365246718c88a5e1dc5f327eb99f34502d97a0c7cd3</originalsourceid><addsrcrecordid>eNp1kLFOwzAQhi0EEqXwAGyRmBgMd3YcJ2xVVVpEJRaYLeM4bao0LnaK1I134A15EhwFwcR0utP3_zp9hFwi3CCAvA0IElMKmFOWphkVR2SEQjJaCM6OyQgAkEoJeErOQtjEtZCZHJG7SRLqdrVvtK-7Q9KtrfN2m1TOJ7O6DZ2t26-Pz8dmmHPnS9cO1OGcnFS6CfbiZ47Jy_3sebqgy6f5w3SypIYXvKOpQZaXusoRrOCpkNKIHHkmWJpJzE2ea2GxNKLiTNrXoqgiBKwspAYjTcnH5HroXetG7Xy91f6gnK7VYrJU_Q24zCCG3jGyVwO78-5tb0OnNm7v2_ieYggIXPAoZExwoIx3IXhb_dYiqF6nGnSqqFP1OlWfYUMmRLZdWf_X_H_oG-l2dxE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2101035395</pqid></control><display><type>article</type><title>A singularity theorem for Einstein–Klein–Gordon theory</title><source>SpringerLink Journals</source><creator>Brown, Peter J. ; Fewster, Christopher J. ; Kontou, Eleni-Alexandra</creator><creatorcontrib>Brown, Peter J. ; Fewster, Christopher J. ; Kontou, Eleni-Alexandra</creatorcontrib><description>Hawking’s singularity theorem concerns matter obeying the strong energy condition (SEC), which means that all observers experience a nonnegative effective energy density (EED), thereby guaranteeing the timelike convergence property. However, there are models that do not satisfy the SEC and therefore lie outside the scope of Hawking’s hypotheses, an important example being the massive Klein–Gordon field. Here we derive lower bounds on local averages of the EED for solutions to the Klein–Gordon equation, allowing nonzero mass and nonminimal coupling to the scalar curvature. The averages are taken along timelike geodesics or over spacetime volumes, and our bounds are valid for a range of coupling constants including both minimal and conformal coupling. Using methods developed by Fewster and Galloway, these lower bounds are applied to prove a Hawking-type singularity theorem for solutions to the Einstein–Klein–Gordon theory, asserting that solutions with sufficient initial contraction at a compact Cauchy surface will be future timelike geodesically incomplete. These results remain true in the presence of additional matter obeying both the strong and weak energy conditions.</description><identifier>ISSN: 0001-7701</identifier><identifier>EISSN: 1572-9532</identifier><identifier>DOI: 10.1007/s10714-018-2446-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Astronomy ; Astrophysics and Cosmology ; Classical and Quantum Gravitation ; Coupling ; Curvature ; Differential Geometry ; Energy ; Flux density ; General Relativity and Quantum Cosmology ; Geodesy ; Gravity ; Klein-Gordon equation ; Lower bounds ; Mathematical and Computational Physics ; Physics ; Physics and Astronomy ; Quantum Physics ; Relativity Theory ; Research Article ; Theorems ; Theoretical</subject><ispartof>General relativity and gravitation, 2018-10, Vol.50 (10), p.1-24, Article 121</ispartof><rights>The Author(s) 2018</rights><rights>Copyright Springer Science & Business Media 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-4c128daf810e534577c581365246718c88a5e1dc5f327eb99f34502d97a0c7cd3</citedby><cites>FETCH-LOGICAL-c393t-4c128daf810e534577c581365246718c88a5e1dc5f327eb99f34502d97a0c7cd3</cites><orcidid>0000-0003-4409-8188 ; 0000-0001-9593-0136</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10714-018-2446-5$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10714-018-2446-5$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03760345$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Brown, Peter J.</creatorcontrib><creatorcontrib>Fewster, Christopher J.</creatorcontrib><creatorcontrib>Kontou, Eleni-Alexandra</creatorcontrib><title>A singularity theorem for Einstein–Klein–Gordon theory</title><title>General relativity and gravitation</title><addtitle>Gen Relativ Gravit</addtitle><description>Hawking’s singularity theorem concerns matter obeying the strong energy condition (SEC), which means that all observers experience a nonnegative effective energy density (EED), thereby guaranteeing the timelike convergence property. However, there are models that do not satisfy the SEC and therefore lie outside the scope of Hawking’s hypotheses, an important example being the massive Klein–Gordon field. Here we derive lower bounds on local averages of the EED for solutions to the Klein–Gordon equation, allowing nonzero mass and nonminimal coupling to the scalar curvature. The averages are taken along timelike geodesics or over spacetime volumes, and our bounds are valid for a range of coupling constants including both minimal and conformal coupling. Using methods developed by Fewster and Galloway, these lower bounds are applied to prove a Hawking-type singularity theorem for solutions to the Einstein–Klein–Gordon theory, asserting that solutions with sufficient initial contraction at a compact Cauchy surface will be future timelike geodesically incomplete. These results remain true in the presence of additional matter obeying both the strong and weak energy conditions.</description><subject>Astronomy</subject><subject>Astrophysics and Cosmology</subject><subject>Classical and Quantum Gravitation</subject><subject>Coupling</subject><subject>Curvature</subject><subject>Differential Geometry</subject><subject>Energy</subject><subject>Flux density</subject><subject>General Relativity and Quantum Cosmology</subject><subject>Geodesy</subject><subject>Gravity</subject><subject>Klein-Gordon equation</subject><subject>Lower bounds</subject><subject>Mathematical and Computational Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Research Article</subject><subject>Theorems</subject><subject>Theoretical</subject><issn>0001-7701</issn><issn>1572-9532</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp1kLFOwzAQhi0EEqXwAGyRmBgMd3YcJ2xVVVpEJRaYLeM4bao0LnaK1I134A15EhwFwcR0utP3_zp9hFwi3CCAvA0IElMKmFOWphkVR2SEQjJaCM6OyQgAkEoJeErOQtjEtZCZHJG7SRLqdrVvtK-7Q9KtrfN2m1TOJ7O6DZ2t26-Pz8dmmHPnS9cO1OGcnFS6CfbiZ47Jy_3sebqgy6f5w3SypIYXvKOpQZaXusoRrOCpkNKIHHkmWJpJzE2ea2GxNKLiTNrXoqgiBKwspAYjTcnH5HroXetG7Xy91f6gnK7VYrJU_Q24zCCG3jGyVwO78-5tb0OnNm7v2_ieYggIXPAoZExwoIx3IXhb_dYiqF6nGnSqqFP1OlWfYUMmRLZdWf_X_H_oG-l2dxE</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Brown, Peter J.</creator><creator>Fewster, Christopher J.</creator><creator>Kontou, Eleni-Alexandra</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-4409-8188</orcidid><orcidid>https://orcid.org/0000-0001-9593-0136</orcidid></search><sort><creationdate>20181001</creationdate><title>A singularity theorem for Einstein–Klein–Gordon theory</title><author>Brown, Peter J. ; Fewster, Christopher J. ; Kontou, Eleni-Alexandra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-4c128daf810e534577c581365246718c88a5e1dc5f327eb99f34502d97a0c7cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Astronomy</topic><topic>Astrophysics and Cosmology</topic><topic>Classical and Quantum Gravitation</topic><topic>Coupling</topic><topic>Curvature</topic><topic>Differential Geometry</topic><topic>Energy</topic><topic>Flux density</topic><topic>General Relativity and Quantum Cosmology</topic><topic>Geodesy</topic><topic>Gravity</topic><topic>Klein-Gordon equation</topic><topic>Lower bounds</topic><topic>Mathematical and Computational Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Research Article</topic><topic>Theorems</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brown, Peter J.</creatorcontrib><creatorcontrib>Fewster, Christopher J.</creatorcontrib><creatorcontrib>Kontou, Eleni-Alexandra</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>General relativity and gravitation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brown, Peter J.</au><au>Fewster, Christopher J.</au><au>Kontou, Eleni-Alexandra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A singularity theorem for Einstein–Klein–Gordon theory</atitle><jtitle>General relativity and gravitation</jtitle><stitle>Gen Relativ Gravit</stitle><date>2018-10-01</date><risdate>2018</risdate><volume>50</volume><issue>10</issue><spage>1</spage><epage>24</epage><pages>1-24</pages><artnum>121</artnum><issn>0001-7701</issn><eissn>1572-9532</eissn><abstract>Hawking’s singularity theorem concerns matter obeying the strong energy condition (SEC), which means that all observers experience a nonnegative effective energy density (EED), thereby guaranteeing the timelike convergence property. However, there are models that do not satisfy the SEC and therefore lie outside the scope of Hawking’s hypotheses, an important example being the massive Klein–Gordon field. Here we derive lower bounds on local averages of the EED for solutions to the Klein–Gordon equation, allowing nonzero mass and nonminimal coupling to the scalar curvature. The averages are taken along timelike geodesics or over spacetime volumes, and our bounds are valid for a range of coupling constants including both minimal and conformal coupling. Using methods developed by Fewster and Galloway, these lower bounds are applied to prove a Hawking-type singularity theorem for solutions to the Einstein–Klein–Gordon theory, asserting that solutions with sufficient initial contraction at a compact Cauchy surface will be future timelike geodesically incomplete. These results remain true in the presence of additional matter obeying both the strong and weak energy conditions.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10714-018-2446-5</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0003-4409-8188</orcidid><orcidid>https://orcid.org/0000-0001-9593-0136</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-7701 |
ispartof | General relativity and gravitation, 2018-10, Vol.50 (10), p.1-24, Article 121 |
issn | 0001-7701 1572-9532 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03760345v1 |
source | SpringerLink Journals |
subjects | Astronomy Astrophysics and Cosmology Classical and Quantum Gravitation Coupling Curvature Differential Geometry Energy Flux density General Relativity and Quantum Cosmology Geodesy Gravity Klein-Gordon equation Lower bounds Mathematical and Computational Physics Physics Physics and Astronomy Quantum Physics Relativity Theory Research Article Theorems Theoretical |
title | A singularity theorem for Einstein–Klein–Gordon theory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T08%3A37%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20singularity%20theorem%20for%20Einstein%E2%80%93Klein%E2%80%93Gordon%20theory&rft.jtitle=General%20relativity%20and%20gravitation&rft.au=Brown,%20Peter%20J.&rft.date=2018-10-01&rft.volume=50&rft.issue=10&rft.spage=1&rft.epage=24&rft.pages=1-24&rft.artnum=121&rft.issn=0001-7701&rft.eissn=1572-9532&rft_id=info:doi/10.1007/s10714-018-2446-5&rft_dat=%3Cproquest_hal_p%3E2101035395%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2101035395&rft_id=info:pmid/&rfr_iscdi=true |