A singularity theorem for Einstein–Klein–Gordon theory

Hawking’s singularity theorem concerns matter obeying the strong energy condition (SEC), which means that all observers experience a nonnegative effective energy density (EED), thereby guaranteeing the timelike convergence property. However, there are models that do not satisfy the SEC and therefore...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:General relativity and gravitation 2018-10, Vol.50 (10), p.1-24, Article 121
Hauptverfasser: Brown, Peter J., Fewster, Christopher J., Kontou, Eleni-Alexandra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 24
container_issue 10
container_start_page 1
container_title General relativity and gravitation
container_volume 50
creator Brown, Peter J.
Fewster, Christopher J.
Kontou, Eleni-Alexandra
description Hawking’s singularity theorem concerns matter obeying the strong energy condition (SEC), which means that all observers experience a nonnegative effective energy density (EED), thereby guaranteeing the timelike convergence property. However, there are models that do not satisfy the SEC and therefore lie outside the scope of Hawking’s hypotheses, an important example being the massive Klein–Gordon field. Here we derive lower bounds on local averages of the EED for solutions to the Klein–Gordon equation, allowing nonzero mass and nonminimal coupling to the scalar curvature. The averages are taken along timelike geodesics or over spacetime volumes, and our bounds are valid for a range of coupling constants including both minimal and conformal coupling. Using methods developed by Fewster and Galloway, these lower bounds are applied to prove a Hawking-type singularity theorem for solutions to the Einstein–Klein–Gordon theory, asserting that solutions with sufficient initial contraction at a compact Cauchy surface will be future timelike geodesically incomplete. These results remain true in the presence of additional matter obeying both the strong and weak energy conditions.
doi_str_mv 10.1007/s10714-018-2446-5
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03760345v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2101035395</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-4c128daf810e534577c581365246718c88a5e1dc5f327eb99f34502d97a0c7cd3</originalsourceid><addsrcrecordid>eNp1kLFOwzAQhi0EEqXwAGyRmBgMd3YcJ2xVVVpEJRaYLeM4bao0LnaK1I134A15EhwFwcR0utP3_zp9hFwi3CCAvA0IElMKmFOWphkVR2SEQjJaCM6OyQgAkEoJeErOQtjEtZCZHJG7SRLqdrVvtK-7Q9KtrfN2m1TOJ7O6DZ2t26-Pz8dmmHPnS9cO1OGcnFS6CfbiZ47Jy_3sebqgy6f5w3SypIYXvKOpQZaXusoRrOCpkNKIHHkmWJpJzE2ea2GxNKLiTNrXoqgiBKwspAYjTcnH5HroXetG7Xy91f6gnK7VYrJU_Q24zCCG3jGyVwO78-5tb0OnNm7v2_ieYggIXPAoZExwoIx3IXhb_dYiqF6nGnSqqFP1OlWfYUMmRLZdWf_X_H_oG-l2dxE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2101035395</pqid></control><display><type>article</type><title>A singularity theorem for Einstein–Klein–Gordon theory</title><source>SpringerLink Journals</source><creator>Brown, Peter J. ; Fewster, Christopher J. ; Kontou, Eleni-Alexandra</creator><creatorcontrib>Brown, Peter J. ; Fewster, Christopher J. ; Kontou, Eleni-Alexandra</creatorcontrib><description>Hawking’s singularity theorem concerns matter obeying the strong energy condition (SEC), which means that all observers experience a nonnegative effective energy density (EED), thereby guaranteeing the timelike convergence property. However, there are models that do not satisfy the SEC and therefore lie outside the scope of Hawking’s hypotheses, an important example being the massive Klein–Gordon field. Here we derive lower bounds on local averages of the EED for solutions to the Klein–Gordon equation, allowing nonzero mass and nonminimal coupling to the scalar curvature. The averages are taken along timelike geodesics or over spacetime volumes, and our bounds are valid for a range of coupling constants including both minimal and conformal coupling. Using methods developed by Fewster and Galloway, these lower bounds are applied to prove a Hawking-type singularity theorem for solutions to the Einstein–Klein–Gordon theory, asserting that solutions with sufficient initial contraction at a compact Cauchy surface will be future timelike geodesically incomplete. These results remain true in the presence of additional matter obeying both the strong and weak energy conditions.</description><identifier>ISSN: 0001-7701</identifier><identifier>EISSN: 1572-9532</identifier><identifier>DOI: 10.1007/s10714-018-2446-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Astronomy ; Astrophysics and Cosmology ; Classical and Quantum Gravitation ; Coupling ; Curvature ; Differential Geometry ; Energy ; Flux density ; General Relativity and Quantum Cosmology ; Geodesy ; Gravity ; Klein-Gordon equation ; Lower bounds ; Mathematical and Computational Physics ; Physics ; Physics and Astronomy ; Quantum Physics ; Relativity Theory ; Research Article ; Theorems ; Theoretical</subject><ispartof>General relativity and gravitation, 2018-10, Vol.50 (10), p.1-24, Article 121</ispartof><rights>The Author(s) 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-4c128daf810e534577c581365246718c88a5e1dc5f327eb99f34502d97a0c7cd3</citedby><cites>FETCH-LOGICAL-c393t-4c128daf810e534577c581365246718c88a5e1dc5f327eb99f34502d97a0c7cd3</cites><orcidid>0000-0003-4409-8188 ; 0000-0001-9593-0136</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10714-018-2446-5$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10714-018-2446-5$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03760345$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Brown, Peter J.</creatorcontrib><creatorcontrib>Fewster, Christopher J.</creatorcontrib><creatorcontrib>Kontou, Eleni-Alexandra</creatorcontrib><title>A singularity theorem for Einstein–Klein–Gordon theory</title><title>General relativity and gravitation</title><addtitle>Gen Relativ Gravit</addtitle><description>Hawking’s singularity theorem concerns matter obeying the strong energy condition (SEC), which means that all observers experience a nonnegative effective energy density (EED), thereby guaranteeing the timelike convergence property. However, there are models that do not satisfy the SEC and therefore lie outside the scope of Hawking’s hypotheses, an important example being the massive Klein–Gordon field. Here we derive lower bounds on local averages of the EED for solutions to the Klein–Gordon equation, allowing nonzero mass and nonminimal coupling to the scalar curvature. The averages are taken along timelike geodesics or over spacetime volumes, and our bounds are valid for a range of coupling constants including both minimal and conformal coupling. Using methods developed by Fewster and Galloway, these lower bounds are applied to prove a Hawking-type singularity theorem for solutions to the Einstein–Klein–Gordon theory, asserting that solutions with sufficient initial contraction at a compact Cauchy surface will be future timelike geodesically incomplete. These results remain true in the presence of additional matter obeying both the strong and weak energy conditions.</description><subject>Astronomy</subject><subject>Astrophysics and Cosmology</subject><subject>Classical and Quantum Gravitation</subject><subject>Coupling</subject><subject>Curvature</subject><subject>Differential Geometry</subject><subject>Energy</subject><subject>Flux density</subject><subject>General Relativity and Quantum Cosmology</subject><subject>Geodesy</subject><subject>Gravity</subject><subject>Klein-Gordon equation</subject><subject>Lower bounds</subject><subject>Mathematical and Computational Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Research Article</subject><subject>Theorems</subject><subject>Theoretical</subject><issn>0001-7701</issn><issn>1572-9532</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp1kLFOwzAQhi0EEqXwAGyRmBgMd3YcJ2xVVVpEJRaYLeM4bao0LnaK1I134A15EhwFwcR0utP3_zp9hFwi3CCAvA0IElMKmFOWphkVR2SEQjJaCM6OyQgAkEoJeErOQtjEtZCZHJG7SRLqdrVvtK-7Q9KtrfN2m1TOJ7O6DZ2t26-Pz8dmmHPnS9cO1OGcnFS6CfbiZ47Jy_3sebqgy6f5w3SypIYXvKOpQZaXusoRrOCpkNKIHHkmWJpJzE2ea2GxNKLiTNrXoqgiBKwspAYjTcnH5HroXetG7Xy91f6gnK7VYrJU_Q24zCCG3jGyVwO78-5tb0OnNm7v2_ieYggIXPAoZExwoIx3IXhb_dYiqF6nGnSqqFP1OlWfYUMmRLZdWf_X_H_oG-l2dxE</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Brown, Peter J.</creator><creator>Fewster, Christopher J.</creator><creator>Kontou, Eleni-Alexandra</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-4409-8188</orcidid><orcidid>https://orcid.org/0000-0001-9593-0136</orcidid></search><sort><creationdate>20181001</creationdate><title>A singularity theorem for Einstein–Klein–Gordon theory</title><author>Brown, Peter J. ; Fewster, Christopher J. ; Kontou, Eleni-Alexandra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-4c128daf810e534577c581365246718c88a5e1dc5f327eb99f34502d97a0c7cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Astronomy</topic><topic>Astrophysics and Cosmology</topic><topic>Classical and Quantum Gravitation</topic><topic>Coupling</topic><topic>Curvature</topic><topic>Differential Geometry</topic><topic>Energy</topic><topic>Flux density</topic><topic>General Relativity and Quantum Cosmology</topic><topic>Geodesy</topic><topic>Gravity</topic><topic>Klein-Gordon equation</topic><topic>Lower bounds</topic><topic>Mathematical and Computational Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Research Article</topic><topic>Theorems</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brown, Peter J.</creatorcontrib><creatorcontrib>Fewster, Christopher J.</creatorcontrib><creatorcontrib>Kontou, Eleni-Alexandra</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>General relativity and gravitation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brown, Peter J.</au><au>Fewster, Christopher J.</au><au>Kontou, Eleni-Alexandra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A singularity theorem for Einstein–Klein–Gordon theory</atitle><jtitle>General relativity and gravitation</jtitle><stitle>Gen Relativ Gravit</stitle><date>2018-10-01</date><risdate>2018</risdate><volume>50</volume><issue>10</issue><spage>1</spage><epage>24</epage><pages>1-24</pages><artnum>121</artnum><issn>0001-7701</issn><eissn>1572-9532</eissn><abstract>Hawking’s singularity theorem concerns matter obeying the strong energy condition (SEC), which means that all observers experience a nonnegative effective energy density (EED), thereby guaranteeing the timelike convergence property. However, there are models that do not satisfy the SEC and therefore lie outside the scope of Hawking’s hypotheses, an important example being the massive Klein–Gordon field. Here we derive lower bounds on local averages of the EED for solutions to the Klein–Gordon equation, allowing nonzero mass and nonminimal coupling to the scalar curvature. The averages are taken along timelike geodesics or over spacetime volumes, and our bounds are valid for a range of coupling constants including both minimal and conformal coupling. Using methods developed by Fewster and Galloway, these lower bounds are applied to prove a Hawking-type singularity theorem for solutions to the Einstein–Klein–Gordon theory, asserting that solutions with sufficient initial contraction at a compact Cauchy surface will be future timelike geodesically incomplete. These results remain true in the presence of additional matter obeying both the strong and weak energy conditions.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10714-018-2446-5</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0003-4409-8188</orcidid><orcidid>https://orcid.org/0000-0001-9593-0136</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0001-7701
ispartof General relativity and gravitation, 2018-10, Vol.50 (10), p.1-24, Article 121
issn 0001-7701
1572-9532
language eng
recordid cdi_hal_primary_oai_HAL_hal_03760345v1
source SpringerLink Journals
subjects Astronomy
Astrophysics and Cosmology
Classical and Quantum Gravitation
Coupling
Curvature
Differential Geometry
Energy
Flux density
General Relativity and Quantum Cosmology
Geodesy
Gravity
Klein-Gordon equation
Lower bounds
Mathematical and Computational Physics
Physics
Physics and Astronomy
Quantum Physics
Relativity Theory
Research Article
Theorems
Theoretical
title A singularity theorem for Einstein–Klein–Gordon theory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T08%3A37%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20singularity%20theorem%20for%20Einstein%E2%80%93Klein%E2%80%93Gordon%20theory&rft.jtitle=General%20relativity%20and%20gravitation&rft.au=Brown,%20Peter%20J.&rft.date=2018-10-01&rft.volume=50&rft.issue=10&rft.spage=1&rft.epage=24&rft.pages=1-24&rft.artnum=121&rft.issn=0001-7701&rft.eissn=1572-9532&rft_id=info:doi/10.1007/s10714-018-2446-5&rft_dat=%3Cproquest_hal_p%3E2101035395%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2101035395&rft_id=info:pmid/&rfr_iscdi=true