Constraining the evolution of Newton’s constant with slow inspirals observed from spaceborne gravitational-wave detectors

Spaceborne gravitational-wave (GW) detectors observing at milli-Hz and deci-Hz frequencies are expected to detect large numbers of quasi-monochromatic signals. The first and second time-derivative of the GW frequency ($\dot f_0$ and $\ddot f_0$) can be measured for the most favourable sources and us...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2023-03, Vol.107 (6), Article 064073
Hauptverfasser: Barbieri, Riccardo, Savastano, Stefano, Speri, Lorenzo, Antonelli, Andrea, Sberna, Laura, Burke, Ollie, Gair, Jonathan, Tamanini, Nicola
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page
container_title Physical review. D
container_volume 107
creator Barbieri, Riccardo
Savastano, Stefano
Speri, Lorenzo
Antonelli, Andrea
Sberna, Laura
Burke, Ollie
Gair, Jonathan
Tamanini, Nicola
description Spaceborne gravitational-wave (GW) detectors observing at milli-Hz and deci-Hz frequencies are expected to detect large numbers of quasi-monochromatic signals. The first and second time-derivative of the GW frequency ($\dot f_0$ and $\ddot f_0$) can be measured for the most favourable sources and used to look for negative post-Newtonian corrections, which can be induced by the source's environment or modifications of general relativity. We present an analytical, Fisher-matrix-based approach to estimate how precisely such corrections can be constrained. We use this method to estimate the bounds attainable on the time evolution of the gravitational constant $G(t)$ with different classes of quasi-monochromatic sources observable with LISA and DECIGO, two representative spaceborne detectors for milli-Hz and deci-Hz GW frequencies. We find that the most constraining source among a simulated population of LISA galactic binaries could yield $\dot G/G_0 \lesssim 10^{-6}\text{yr}^{-1}$, while the best currently known verification binary will reach $\dot G/G_0 \lesssim 10^{-4}\text{yr}^{-1}$. We also perform Monte-Carlo simulations using quasi-monochromatic waveforms to check the validity of our Fisher-matrix approach, as well as inspiralling waveforms to analyse binaries that do not satisfy the quasi-monochromatic assumption. We find that our analytical Fisher matrix produces good order-of-magnitude constraints even for sources well beyond its regime of validity. Monte-Carlo investigations also show that chirping stellar-mass compact binaries detected by DECIGO-like detectors at cosmological distances of tens of Mpc can yield constraints as tight as $\dot G/G_0 \lesssim 10^{-11}\text{yr}^{-1}$.
doi_str_mv 10.1103/PhysRevD.107.064073
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03759822v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_03759822v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2433-d4623c979152b7b70d5155b2e4a90b10dda62776f73ada9cd1b5e343b13b2b263</originalsourceid><addsrcrecordid>eNo9kL1OwzAcxC0EEhX0CVi8MqT8bScxGavyUaQKEII5smOnMUrtyjaJKhZeg9fjSUhU6HSn0-9uOIQuCMwIAXb13OzCi-5uZgT4DPIUODtCE5pySABocXzwBE7RNIR3GGwOBSdkgj4XzobohbHGrnFsNNadaz-icRa7Gj_qPjr78_UdcDWCwkbcm9jg0LoeGxu2xos2YCeD9p1WuPZug8NWVFo6bzVee9GZKMY90Sa96DRWOuoqOh_O0Uk9lPX0T8_Q293t62KZrJ7uHxbzVVLRlLFEpTllVcELklHJJQeVkSyTVKeiAElAKZFTzvOaM6FEUSkiM81SJgmTVNKcnaHL_W4j2nLrzUb4XemEKZfzVTlmwHhWXFPakYFle7byLgSv60OBQDneXf7fPQS83N_NfgEfbXhT</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Constraining the evolution of Newton’s constant with slow inspirals observed from spaceborne gravitational-wave detectors</title><source>American Physical Society Journals</source><creator>Barbieri, Riccardo ; Savastano, Stefano ; Speri, Lorenzo ; Antonelli, Andrea ; Sberna, Laura ; Burke, Ollie ; Gair, Jonathan ; Tamanini, Nicola</creator><creatorcontrib>Barbieri, Riccardo ; Savastano, Stefano ; Speri, Lorenzo ; Antonelli, Andrea ; Sberna, Laura ; Burke, Ollie ; Gair, Jonathan ; Tamanini, Nicola</creatorcontrib><description>Spaceborne gravitational-wave (GW) detectors observing at milli-Hz and deci-Hz frequencies are expected to detect large numbers of quasi-monochromatic signals. The first and second time-derivative of the GW frequency ($\dot f_0$ and $\ddot f_0$) can be measured for the most favourable sources and used to look for negative post-Newtonian corrections, which can be induced by the source's environment or modifications of general relativity. We present an analytical, Fisher-matrix-based approach to estimate how precisely such corrections can be constrained. We use this method to estimate the bounds attainable on the time evolution of the gravitational constant $G(t)$ with different classes of quasi-monochromatic sources observable with LISA and DECIGO, two representative spaceborne detectors for milli-Hz and deci-Hz GW frequencies. We find that the most constraining source among a simulated population of LISA galactic binaries could yield $\dot G/G_0 \lesssim 10^{-6}\text{yr}^{-1}$, while the best currently known verification binary will reach $\dot G/G_0 \lesssim 10^{-4}\text{yr}^{-1}$. We also perform Monte-Carlo simulations using quasi-monochromatic waveforms to check the validity of our Fisher-matrix approach, as well as inspiralling waveforms to analyse binaries that do not satisfy the quasi-monochromatic assumption. We find that our analytical Fisher matrix produces good order-of-magnitude constraints even for sources well beyond its regime of validity. Monte-Carlo investigations also show that chirping stellar-mass compact binaries detected by DECIGO-like detectors at cosmological distances of tens of Mpc can yield constraints as tight as $\dot G/G_0 \lesssim 10^{-11}\text{yr}^{-1}$.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.107.064073</identifier><language>eng</language><publisher>American Physical Society</publisher><subject>General Relativity and Quantum Cosmology ; Physics</subject><ispartof>Physical review. D, 2023-03, Vol.107 (6), Article 064073</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2433-d4623c979152b7b70d5155b2e4a90b10dda62776f73ada9cd1b5e343b13b2b263</citedby><cites>FETCH-LOGICAL-c2433-d4623c979152b7b70d5155b2e4a90b10dda62776f73ada9cd1b5e343b13b2b263</cites><orcidid>0000-0002-8751-9889 ; 0000-0002-4552-7733 ; 0000-0002-5442-7267</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2874,2875,27922,27923</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03759822$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Barbieri, Riccardo</creatorcontrib><creatorcontrib>Savastano, Stefano</creatorcontrib><creatorcontrib>Speri, Lorenzo</creatorcontrib><creatorcontrib>Antonelli, Andrea</creatorcontrib><creatorcontrib>Sberna, Laura</creatorcontrib><creatorcontrib>Burke, Ollie</creatorcontrib><creatorcontrib>Gair, Jonathan</creatorcontrib><creatorcontrib>Tamanini, Nicola</creatorcontrib><title>Constraining the evolution of Newton’s constant with slow inspirals observed from spaceborne gravitational-wave detectors</title><title>Physical review. D</title><description>Spaceborne gravitational-wave (GW) detectors observing at milli-Hz and deci-Hz frequencies are expected to detect large numbers of quasi-monochromatic signals. The first and second time-derivative of the GW frequency ($\dot f_0$ and $\ddot f_0$) can be measured for the most favourable sources and used to look for negative post-Newtonian corrections, which can be induced by the source's environment or modifications of general relativity. We present an analytical, Fisher-matrix-based approach to estimate how precisely such corrections can be constrained. We use this method to estimate the bounds attainable on the time evolution of the gravitational constant $G(t)$ with different classes of quasi-monochromatic sources observable with LISA and DECIGO, two representative spaceborne detectors for milli-Hz and deci-Hz GW frequencies. We find that the most constraining source among a simulated population of LISA galactic binaries could yield $\dot G/G_0 \lesssim 10^{-6}\text{yr}^{-1}$, while the best currently known verification binary will reach $\dot G/G_0 \lesssim 10^{-4}\text{yr}^{-1}$. We also perform Monte-Carlo simulations using quasi-monochromatic waveforms to check the validity of our Fisher-matrix approach, as well as inspiralling waveforms to analyse binaries that do not satisfy the quasi-monochromatic assumption. We find that our analytical Fisher matrix produces good order-of-magnitude constraints even for sources well beyond its regime of validity. Monte-Carlo investigations also show that chirping stellar-mass compact binaries detected by DECIGO-like detectors at cosmological distances of tens of Mpc can yield constraints as tight as $\dot G/G_0 \lesssim 10^{-11}\text{yr}^{-1}$.</description><subject>General Relativity and Quantum Cosmology</subject><subject>Physics</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kL1OwzAcxC0EEhX0CVi8MqT8bScxGavyUaQKEII5smOnMUrtyjaJKhZeg9fjSUhU6HSn0-9uOIQuCMwIAXb13OzCi-5uZgT4DPIUODtCE5pySABocXzwBE7RNIR3GGwOBSdkgj4XzobohbHGrnFsNNadaz-icRa7Gj_qPjr78_UdcDWCwkbcm9jg0LoeGxu2xos2YCeD9p1WuPZug8NWVFo6bzVee9GZKMY90Sa96DRWOuoqOh_O0Uk9lPX0T8_Q293t62KZrJ7uHxbzVVLRlLFEpTllVcELklHJJQeVkSyTVKeiAElAKZFTzvOaM6FEUSkiM81SJgmTVNKcnaHL_W4j2nLrzUb4XemEKZfzVTlmwHhWXFPakYFle7byLgSv60OBQDneXf7fPQS83N_NfgEfbXhT</recordid><startdate>20230315</startdate><enddate>20230315</enddate><creator>Barbieri, Riccardo</creator><creator>Savastano, Stefano</creator><creator>Speri, Lorenzo</creator><creator>Antonelli, Andrea</creator><creator>Sberna, Laura</creator><creator>Burke, Ollie</creator><creator>Gair, Jonathan</creator><creator>Tamanini, Nicola</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-8751-9889</orcidid><orcidid>https://orcid.org/0000-0002-4552-7733</orcidid><orcidid>https://orcid.org/0000-0002-5442-7267</orcidid></search><sort><creationdate>20230315</creationdate><title>Constraining the evolution of Newton’s constant with slow inspirals observed from spaceborne gravitational-wave detectors</title><author>Barbieri, Riccardo ; Savastano, Stefano ; Speri, Lorenzo ; Antonelli, Andrea ; Sberna, Laura ; Burke, Ollie ; Gair, Jonathan ; Tamanini, Nicola</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2433-d4623c979152b7b70d5155b2e4a90b10dda62776f73ada9cd1b5e343b13b2b263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>General Relativity and Quantum Cosmology</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barbieri, Riccardo</creatorcontrib><creatorcontrib>Savastano, Stefano</creatorcontrib><creatorcontrib>Speri, Lorenzo</creatorcontrib><creatorcontrib>Antonelli, Andrea</creatorcontrib><creatorcontrib>Sberna, Laura</creatorcontrib><creatorcontrib>Burke, Ollie</creatorcontrib><creatorcontrib>Gair, Jonathan</creatorcontrib><creatorcontrib>Tamanini, Nicola</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barbieri, Riccardo</au><au>Savastano, Stefano</au><au>Speri, Lorenzo</au><au>Antonelli, Andrea</au><au>Sberna, Laura</au><au>Burke, Ollie</au><au>Gair, Jonathan</au><au>Tamanini, Nicola</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constraining the evolution of Newton’s constant with slow inspirals observed from spaceborne gravitational-wave detectors</atitle><jtitle>Physical review. D</jtitle><date>2023-03-15</date><risdate>2023</risdate><volume>107</volume><issue>6</issue><artnum>064073</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>Spaceborne gravitational-wave (GW) detectors observing at milli-Hz and deci-Hz frequencies are expected to detect large numbers of quasi-monochromatic signals. The first and second time-derivative of the GW frequency ($\dot f_0$ and $\ddot f_0$) can be measured for the most favourable sources and used to look for negative post-Newtonian corrections, which can be induced by the source's environment or modifications of general relativity. We present an analytical, Fisher-matrix-based approach to estimate how precisely such corrections can be constrained. We use this method to estimate the bounds attainable on the time evolution of the gravitational constant $G(t)$ with different classes of quasi-monochromatic sources observable with LISA and DECIGO, two representative spaceborne detectors for milli-Hz and deci-Hz GW frequencies. We find that the most constraining source among a simulated population of LISA galactic binaries could yield $\dot G/G_0 \lesssim 10^{-6}\text{yr}^{-1}$, while the best currently known verification binary will reach $\dot G/G_0 \lesssim 10^{-4}\text{yr}^{-1}$. We also perform Monte-Carlo simulations using quasi-monochromatic waveforms to check the validity of our Fisher-matrix approach, as well as inspiralling waveforms to analyse binaries that do not satisfy the quasi-monochromatic assumption. We find that our analytical Fisher matrix produces good order-of-magnitude constraints even for sources well beyond its regime of validity. Monte-Carlo investigations also show that chirping stellar-mass compact binaries detected by DECIGO-like detectors at cosmological distances of tens of Mpc can yield constraints as tight as $\dot G/G_0 \lesssim 10^{-11}\text{yr}^{-1}$.</abstract><pub>American Physical Society</pub><doi>10.1103/PhysRevD.107.064073</doi><orcidid>https://orcid.org/0000-0002-8751-9889</orcidid><orcidid>https://orcid.org/0000-0002-4552-7733</orcidid><orcidid>https://orcid.org/0000-0002-5442-7267</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2470-0010
ispartof Physical review. D, 2023-03, Vol.107 (6), Article 064073
issn 2470-0010
2470-0029
language eng
recordid cdi_hal_primary_oai_HAL_hal_03759822v1
source American Physical Society Journals
subjects General Relativity and Quantum Cosmology
Physics
title Constraining the evolution of Newton’s constant with slow inspirals observed from spaceborne gravitational-wave detectors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T19%3A17%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constraining%20the%20evolution%20of%20Newton%E2%80%99s%20constant%20with%20slow%20inspirals%20observed%20from%20spaceborne%20gravitational-wave%20detectors&rft.jtitle=Physical%20review.%20D&rft.au=Barbieri,%20Riccardo&rft.date=2023-03-15&rft.volume=107&rft.issue=6&rft.artnum=064073&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.107.064073&rft_dat=%3Chal_cross%3Eoai_HAL_hal_03759822v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true