Generalized deep thermalization for free fermions

In non-interacting isolated quantum systems out of equilibrium, local subsystems typically relax to non-thermal stationary states. In the standard framework, information on the rest of the system is discarded, and such states are described by a Generalized Gibbs Ensemble (GGE), maximizing the entrop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. A 2023-03, Vol.107 (3), Article 032215
Hauptverfasser: Lucas, Maxime, Piroli, Lorenzo, De Nardis, Jacopo, De Luca, Andrea
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Physical review. A
container_volume 107
creator Lucas, Maxime
Piroli, Lorenzo
De Nardis, Jacopo
De Luca, Andrea
description In non-interacting isolated quantum systems out of equilibrium, local subsystems typically relax to non-thermal stationary states. In the standard framework, information on the rest of the system is discarded, and such states are described by a Generalized Gibbs Ensemble (GGE), maximizing the entropy while respecting the constraints imposed by the local conservation laws. Here we show that the latter also completely characterize a recently introduced projected ensemble (PE), constructed by performing projective measurements on the rest of the system and recording the outcomes. By focusing on the time evolution of fermionic Gaussian states in a tight-binding chain, we put forward a random ensemble constructed out of the local conservation laws, which we call deep GGE (dGGE). For infinite-temperature initial states, we show that the dGGE coincides with a universal Haar random ensemble on the manifold of Gaussian states. For both infinite and finite temperatures, we use a Monte Carlo approach to test numerically the predictions of the dGGE against the PE. We study in particular the $k$-moments of the state covariance matrix and the entanglement entropy, finding excellent agreement. Our work provides a first step towards a systematic characterization of projected ensembles beyond the case of chaotic systems and infinite temperatures.
doi_str_mv 10.1103/PhysRevA.107.032215
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03752044v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_03752044v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-d0f0c3a22f9f0ba2c07b44f711be7a4bd45f01e3fae1acbea5e164c24c18e0d83</originalsourceid><addsrcrecordid>eNo9kEFLw0AQhRdRsNT-Ai-5ekic2d1kk2Mo2goBRfS8bDazJJI2ZTcU6q83obaneXy8N4ePsUeEBBHE80d7Cp90LBMElYDgHNMbtuAyK-KiEPL2mnl2z1Yh_AAApkWRiWzBcEN78qbvfqmJGqJDNLbkdzMwYzfsIzf4yHmiyE14AuGB3TnTB1r93yX7fn35Wm_j6n3zti6r2Aqej3EDDqwwnLvCQW24BVVL6RRiTcrIupGpAyThDKGxNZmUMJOWS4s5QZOLJXs6_21Nrw--2xl_0oPp9Las9MxAqJSDlEecuuLctX4IwZO7DhD0LElfJE1A6bMk8QeHZVw4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Generalized deep thermalization for free fermions</title><source>American Physical Society Journals</source><creator>Lucas, Maxime ; Piroli, Lorenzo ; De Nardis, Jacopo ; De Luca, Andrea</creator><creatorcontrib>Lucas, Maxime ; Piroli, Lorenzo ; De Nardis, Jacopo ; De Luca, Andrea</creatorcontrib><description>In non-interacting isolated quantum systems out of equilibrium, local subsystems typically relax to non-thermal stationary states. In the standard framework, information on the rest of the system is discarded, and such states are described by a Generalized Gibbs Ensemble (GGE), maximizing the entropy while respecting the constraints imposed by the local conservation laws. Here we show that the latter also completely characterize a recently introduced projected ensemble (PE), constructed by performing projective measurements on the rest of the system and recording the outcomes. By focusing on the time evolution of fermionic Gaussian states in a tight-binding chain, we put forward a random ensemble constructed out of the local conservation laws, which we call deep GGE (dGGE). For infinite-temperature initial states, we show that the dGGE coincides with a universal Haar random ensemble on the manifold of Gaussian states. For both infinite and finite temperatures, we use a Monte Carlo approach to test numerically the predictions of the dGGE against the PE. We study in particular the $k$-moments of the state covariance matrix and the entanglement entropy, finding excellent agreement. Our work provides a first step towards a systematic characterization of projected ensembles beyond the case of chaotic systems and infinite temperatures.</description><identifier>ISSN: 2469-9926</identifier><identifier>EISSN: 2469-9934</identifier><identifier>DOI: 10.1103/PhysRevA.107.032215</identifier><language>eng</language><publisher>American Physical Society</publisher><subject>Condensed Matter ; Physics ; Quantum Physics</subject><ispartof>Physical review. A, 2023-03, Vol.107 (3), Article 032215</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-d0f0c3a22f9f0ba2c07b44f711be7a4bd45f01e3fae1acbea5e164c24c18e0d83</citedby><cites>FETCH-LOGICAL-c328t-d0f0c3a22f9f0ba2c07b44f711be7a4bd45f01e3fae1acbea5e164c24c18e0d83</cites><orcidid>0000-0002-0107-3338 ; 0000-0001-8044-1399 ; 0000-0003-0272-5083</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2862,2863,27903,27904</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03752044$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lucas, Maxime</creatorcontrib><creatorcontrib>Piroli, Lorenzo</creatorcontrib><creatorcontrib>De Nardis, Jacopo</creatorcontrib><creatorcontrib>De Luca, Andrea</creatorcontrib><title>Generalized deep thermalization for free fermions</title><title>Physical review. A</title><description>In non-interacting isolated quantum systems out of equilibrium, local subsystems typically relax to non-thermal stationary states. In the standard framework, information on the rest of the system is discarded, and such states are described by a Generalized Gibbs Ensemble (GGE), maximizing the entropy while respecting the constraints imposed by the local conservation laws. Here we show that the latter also completely characterize a recently introduced projected ensemble (PE), constructed by performing projective measurements on the rest of the system and recording the outcomes. By focusing on the time evolution of fermionic Gaussian states in a tight-binding chain, we put forward a random ensemble constructed out of the local conservation laws, which we call deep GGE (dGGE). For infinite-temperature initial states, we show that the dGGE coincides with a universal Haar random ensemble on the manifold of Gaussian states. For both infinite and finite temperatures, we use a Monte Carlo approach to test numerically the predictions of the dGGE against the PE. We study in particular the $k$-moments of the state covariance matrix and the entanglement entropy, finding excellent agreement. Our work provides a first step towards a systematic characterization of projected ensembles beyond the case of chaotic systems and infinite temperatures.</description><subject>Condensed Matter</subject><subject>Physics</subject><subject>Quantum Physics</subject><issn>2469-9926</issn><issn>2469-9934</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kEFLw0AQhRdRsNT-Ai-5ekic2d1kk2Mo2goBRfS8bDazJJI2ZTcU6q83obaneXy8N4ePsUeEBBHE80d7Cp90LBMElYDgHNMbtuAyK-KiEPL2mnl2z1Yh_AAApkWRiWzBcEN78qbvfqmJGqJDNLbkdzMwYzfsIzf4yHmiyE14AuGB3TnTB1r93yX7fn35Wm_j6n3zti6r2Aqej3EDDqwwnLvCQW24BVVL6RRiTcrIupGpAyThDKGxNZmUMJOWS4s5QZOLJXs6_21Nrw--2xl_0oPp9Las9MxAqJSDlEecuuLctX4IwZO7DhD0LElfJE1A6bMk8QeHZVw4</recordid><startdate>20230322</startdate><enddate>20230322</enddate><creator>Lucas, Maxime</creator><creator>Piroli, Lorenzo</creator><creator>De Nardis, Jacopo</creator><creator>De Luca, Andrea</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-0107-3338</orcidid><orcidid>https://orcid.org/0000-0001-8044-1399</orcidid><orcidid>https://orcid.org/0000-0003-0272-5083</orcidid></search><sort><creationdate>20230322</creationdate><title>Generalized deep thermalization for free fermions</title><author>Lucas, Maxime ; Piroli, Lorenzo ; De Nardis, Jacopo ; De Luca, Andrea</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-d0f0c3a22f9f0ba2c07b44f711be7a4bd45f01e3fae1acbea5e164c24c18e0d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Condensed Matter</topic><topic>Physics</topic><topic>Quantum Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lucas, Maxime</creatorcontrib><creatorcontrib>Piroli, Lorenzo</creatorcontrib><creatorcontrib>De Nardis, Jacopo</creatorcontrib><creatorcontrib>De Luca, Andrea</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Physical review. A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lucas, Maxime</au><au>Piroli, Lorenzo</au><au>De Nardis, Jacopo</au><au>De Luca, Andrea</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized deep thermalization for free fermions</atitle><jtitle>Physical review. A</jtitle><date>2023-03-22</date><risdate>2023</risdate><volume>107</volume><issue>3</issue><artnum>032215</artnum><issn>2469-9926</issn><eissn>2469-9934</eissn><abstract>In non-interacting isolated quantum systems out of equilibrium, local subsystems typically relax to non-thermal stationary states. In the standard framework, information on the rest of the system is discarded, and such states are described by a Generalized Gibbs Ensemble (GGE), maximizing the entropy while respecting the constraints imposed by the local conservation laws. Here we show that the latter also completely characterize a recently introduced projected ensemble (PE), constructed by performing projective measurements on the rest of the system and recording the outcomes. By focusing on the time evolution of fermionic Gaussian states in a tight-binding chain, we put forward a random ensemble constructed out of the local conservation laws, which we call deep GGE (dGGE). For infinite-temperature initial states, we show that the dGGE coincides with a universal Haar random ensemble on the manifold of Gaussian states. For both infinite and finite temperatures, we use a Monte Carlo approach to test numerically the predictions of the dGGE against the PE. We study in particular the $k$-moments of the state covariance matrix and the entanglement entropy, finding excellent agreement. Our work provides a first step towards a systematic characterization of projected ensembles beyond the case of chaotic systems and infinite temperatures.</abstract><pub>American Physical Society</pub><doi>10.1103/PhysRevA.107.032215</doi><orcidid>https://orcid.org/0000-0002-0107-3338</orcidid><orcidid>https://orcid.org/0000-0001-8044-1399</orcidid><orcidid>https://orcid.org/0000-0003-0272-5083</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2469-9926
ispartof Physical review. A, 2023-03, Vol.107 (3), Article 032215
issn 2469-9926
2469-9934
language eng
recordid cdi_hal_primary_oai_HAL_hal_03752044v1
source American Physical Society Journals
subjects Condensed Matter
Physics
Quantum Physics
title Generalized deep thermalization for free fermions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T14%3A12%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20deep%20thermalization%20for%20free%20fermions&rft.jtitle=Physical%20review.%20A&rft.au=Lucas,%20Maxime&rft.date=2023-03-22&rft.volume=107&rft.issue=3&rft.artnum=032215&rft.issn=2469-9926&rft.eissn=2469-9934&rft_id=info:doi/10.1103/PhysRevA.107.032215&rft_dat=%3Chal_cross%3Eoai_HAL_hal_03752044v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true