Generalized deep thermalization for free fermions
In non-interacting isolated quantum systems out of equilibrium, local subsystems typically relax to non-thermal stationary states. In the standard framework, information on the rest of the system is discarded, and such states are described by a Generalized Gibbs Ensemble (GGE), maximizing the entrop...
Gespeichert in:
Veröffentlicht in: | Physical review. A 2023-03, Vol.107 (3), Article 032215 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Physical review. A |
container_volume | 107 |
creator | Lucas, Maxime Piroli, Lorenzo De Nardis, Jacopo De Luca, Andrea |
description | In non-interacting isolated quantum systems out of equilibrium, local subsystems typically relax to non-thermal stationary states. In the standard framework, information on the rest of the system is discarded, and such states are described by a Generalized Gibbs Ensemble (GGE), maximizing the entropy while respecting the constraints imposed by the local conservation laws. Here we show that the latter also completely characterize a recently introduced projected ensemble (PE), constructed by performing projective measurements on the rest of the system and recording the outcomes. By focusing on the time evolution of fermionic Gaussian states in a tight-binding chain, we put forward a random ensemble constructed out of the local conservation laws, which we call deep GGE (dGGE). For infinite-temperature initial states, we show that the dGGE coincides with a universal Haar random ensemble on the manifold of Gaussian states. For both infinite and finite temperatures, we use a Monte Carlo approach to test numerically the predictions of the dGGE against the PE. We study in particular the $k$-moments of the state covariance matrix and the entanglement entropy, finding excellent agreement. Our work provides a first step towards a systematic characterization of projected ensembles beyond the case of chaotic systems and infinite temperatures. |
doi_str_mv | 10.1103/PhysRevA.107.032215 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03752044v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_03752044v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-d0f0c3a22f9f0ba2c07b44f711be7a4bd45f01e3fae1acbea5e164c24c18e0d83</originalsourceid><addsrcrecordid>eNo9kEFLw0AQhRdRsNT-Ai-5ekic2d1kk2Mo2goBRfS8bDazJJI2ZTcU6q83obaneXy8N4ePsUeEBBHE80d7Cp90LBMElYDgHNMbtuAyK-KiEPL2mnl2z1Yh_AAApkWRiWzBcEN78qbvfqmJGqJDNLbkdzMwYzfsIzf4yHmiyE14AuGB3TnTB1r93yX7fn35Wm_j6n3zti6r2Aqej3EDDqwwnLvCQW24BVVL6RRiTcrIupGpAyThDKGxNZmUMJOWS4s5QZOLJXs6_21Nrw--2xl_0oPp9Las9MxAqJSDlEecuuLctX4IwZO7DhD0LElfJE1A6bMk8QeHZVw4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Generalized deep thermalization for free fermions</title><source>American Physical Society Journals</source><creator>Lucas, Maxime ; Piroli, Lorenzo ; De Nardis, Jacopo ; De Luca, Andrea</creator><creatorcontrib>Lucas, Maxime ; Piroli, Lorenzo ; De Nardis, Jacopo ; De Luca, Andrea</creatorcontrib><description>In non-interacting isolated quantum systems out of equilibrium, local subsystems typically relax to non-thermal stationary states. In the standard framework, information on the rest of the system is discarded, and such states are described by a Generalized Gibbs Ensemble (GGE), maximizing the entropy while respecting the constraints imposed by the local conservation laws. Here we show that the latter also completely characterize a recently introduced projected ensemble (PE), constructed by performing projective measurements on the rest of the system and recording the outcomes. By focusing on the time evolution of fermionic Gaussian states in a tight-binding chain, we put forward a random ensemble constructed out of the local conservation laws, which we call deep GGE (dGGE). For infinite-temperature initial states, we show that the dGGE coincides with a universal Haar random ensemble on the manifold of Gaussian states. For both infinite and finite temperatures, we use a Monte Carlo approach to test numerically the predictions of the dGGE against the PE. We study in particular the $k$-moments of the state covariance matrix and the entanglement entropy, finding excellent agreement. Our work provides a first step towards a systematic characterization of projected ensembles beyond the case of chaotic systems and infinite temperatures.</description><identifier>ISSN: 2469-9926</identifier><identifier>EISSN: 2469-9934</identifier><identifier>DOI: 10.1103/PhysRevA.107.032215</identifier><language>eng</language><publisher>American Physical Society</publisher><subject>Condensed Matter ; Physics ; Quantum Physics</subject><ispartof>Physical review. A, 2023-03, Vol.107 (3), Article 032215</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-d0f0c3a22f9f0ba2c07b44f711be7a4bd45f01e3fae1acbea5e164c24c18e0d83</citedby><cites>FETCH-LOGICAL-c328t-d0f0c3a22f9f0ba2c07b44f711be7a4bd45f01e3fae1acbea5e164c24c18e0d83</cites><orcidid>0000-0002-0107-3338 ; 0000-0001-8044-1399 ; 0000-0003-0272-5083</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2862,2863,27903,27904</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03752044$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lucas, Maxime</creatorcontrib><creatorcontrib>Piroli, Lorenzo</creatorcontrib><creatorcontrib>De Nardis, Jacopo</creatorcontrib><creatorcontrib>De Luca, Andrea</creatorcontrib><title>Generalized deep thermalization for free fermions</title><title>Physical review. A</title><description>In non-interacting isolated quantum systems out of equilibrium, local subsystems typically relax to non-thermal stationary states. In the standard framework, information on the rest of the system is discarded, and such states are described by a Generalized Gibbs Ensemble (GGE), maximizing the entropy while respecting the constraints imposed by the local conservation laws. Here we show that the latter also completely characterize a recently introduced projected ensemble (PE), constructed by performing projective measurements on the rest of the system and recording the outcomes. By focusing on the time evolution of fermionic Gaussian states in a tight-binding chain, we put forward a random ensemble constructed out of the local conservation laws, which we call deep GGE (dGGE). For infinite-temperature initial states, we show that the dGGE coincides with a universal Haar random ensemble on the manifold of Gaussian states. For both infinite and finite temperatures, we use a Monte Carlo approach to test numerically the predictions of the dGGE against the PE. We study in particular the $k$-moments of the state covariance matrix and the entanglement entropy, finding excellent agreement. Our work provides a first step towards a systematic characterization of projected ensembles beyond the case of chaotic systems and infinite temperatures.</description><subject>Condensed Matter</subject><subject>Physics</subject><subject>Quantum Physics</subject><issn>2469-9926</issn><issn>2469-9934</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kEFLw0AQhRdRsNT-Ai-5ekic2d1kk2Mo2goBRfS8bDazJJI2ZTcU6q83obaneXy8N4ePsUeEBBHE80d7Cp90LBMElYDgHNMbtuAyK-KiEPL2mnl2z1Yh_AAApkWRiWzBcEN78qbvfqmJGqJDNLbkdzMwYzfsIzf4yHmiyE14AuGB3TnTB1r93yX7fn35Wm_j6n3zti6r2Aqej3EDDqwwnLvCQW24BVVL6RRiTcrIupGpAyThDKGxNZmUMJOWS4s5QZOLJXs6_21Nrw--2xl_0oPp9Las9MxAqJSDlEecuuLctX4IwZO7DhD0LElfJE1A6bMk8QeHZVw4</recordid><startdate>20230322</startdate><enddate>20230322</enddate><creator>Lucas, Maxime</creator><creator>Piroli, Lorenzo</creator><creator>De Nardis, Jacopo</creator><creator>De Luca, Andrea</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-0107-3338</orcidid><orcidid>https://orcid.org/0000-0001-8044-1399</orcidid><orcidid>https://orcid.org/0000-0003-0272-5083</orcidid></search><sort><creationdate>20230322</creationdate><title>Generalized deep thermalization for free fermions</title><author>Lucas, Maxime ; Piroli, Lorenzo ; De Nardis, Jacopo ; De Luca, Andrea</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-d0f0c3a22f9f0ba2c07b44f711be7a4bd45f01e3fae1acbea5e164c24c18e0d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Condensed Matter</topic><topic>Physics</topic><topic>Quantum Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lucas, Maxime</creatorcontrib><creatorcontrib>Piroli, Lorenzo</creatorcontrib><creatorcontrib>De Nardis, Jacopo</creatorcontrib><creatorcontrib>De Luca, Andrea</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Physical review. A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lucas, Maxime</au><au>Piroli, Lorenzo</au><au>De Nardis, Jacopo</au><au>De Luca, Andrea</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized deep thermalization for free fermions</atitle><jtitle>Physical review. A</jtitle><date>2023-03-22</date><risdate>2023</risdate><volume>107</volume><issue>3</issue><artnum>032215</artnum><issn>2469-9926</issn><eissn>2469-9934</eissn><abstract>In non-interacting isolated quantum systems out of equilibrium, local subsystems typically relax to non-thermal stationary states. In the standard framework, information on the rest of the system is discarded, and such states are described by a Generalized Gibbs Ensemble (GGE), maximizing the entropy while respecting the constraints imposed by the local conservation laws. Here we show that the latter also completely characterize a recently introduced projected ensemble (PE), constructed by performing projective measurements on the rest of the system and recording the outcomes. By focusing on the time evolution of fermionic Gaussian states in a tight-binding chain, we put forward a random ensemble constructed out of the local conservation laws, which we call deep GGE (dGGE). For infinite-temperature initial states, we show that the dGGE coincides with a universal Haar random ensemble on the manifold of Gaussian states. For both infinite and finite temperatures, we use a Monte Carlo approach to test numerically the predictions of the dGGE against the PE. We study in particular the $k$-moments of the state covariance matrix and the entanglement entropy, finding excellent agreement. Our work provides a first step towards a systematic characterization of projected ensembles beyond the case of chaotic systems and infinite temperatures.</abstract><pub>American Physical Society</pub><doi>10.1103/PhysRevA.107.032215</doi><orcidid>https://orcid.org/0000-0002-0107-3338</orcidid><orcidid>https://orcid.org/0000-0001-8044-1399</orcidid><orcidid>https://orcid.org/0000-0003-0272-5083</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2469-9926 |
ispartof | Physical review. A, 2023-03, Vol.107 (3), Article 032215 |
issn | 2469-9926 2469-9934 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03752044v1 |
source | American Physical Society Journals |
subjects | Condensed Matter Physics Quantum Physics |
title | Generalized deep thermalization for free fermions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T14%3A12%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20deep%20thermalization%20for%20free%20fermions&rft.jtitle=Physical%20review.%20A&rft.au=Lucas,%20Maxime&rft.date=2023-03-22&rft.volume=107&rft.issue=3&rft.artnum=032215&rft.issn=2469-9926&rft.eissn=2469-9934&rft_id=info:doi/10.1103/PhysRevA.107.032215&rft_dat=%3Chal_cross%3Eoai_HAL_hal_03752044v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |