Algebraic techniques and perturbation methods to approach frequency response curves

The Algebra is exploited to study approximated responses of nonlinear dynamical systems leading to tracing solutions of approximated bifurcation diagrams associated with polynomial equations resulting from search of approximated periodic solutions of nonlinear ordinary differential equations. In det...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of non-linear mechanics 2022-09, Vol.144, p.104096, Article 104096
Hauptverfasser: Lamarque, C.-H., Ture Savadkoohi, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 104096
container_title International journal of non-linear mechanics
container_volume 144
creator Lamarque, C.-H.
Ture Savadkoohi, A.
description The Algebra is exploited to study approximated responses of nonlinear dynamical systems leading to tracing solutions of approximated bifurcation diagrams associated with polynomial equations resulting from search of approximated periodic solutions of nonlinear ordinary differential equations. In detail via using the Gröbner basis, a polynomial with the smallest degree in term of the approximated amplitude of the systems, here the L2 norm of coefficients of truncated Fourier series, is extracted where its coefficients are parameters of the systems such as the frequency. The presented methodology permits to detect maximal number of solutions even those which belong to isola of the frequency response curves of the system. •The Algebra is exploited to study approximated periodic responses of nonlinear dynamical systems.•Searching these responses leads to polynomial equations.•Gröbner bases are built from the set of polynomial equations.•A polynomial with the smallest degree in term of the approximated amplitude of the response is extracted.
doi_str_mv 10.1016/j.ijnonlinmec.2022.104096
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03749838v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020746222001172</els_id><sourcerecordid>2691826985</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-5fe5dd9d7229ae15cd9ae782c085a20e06b3870c14e217d0237c115afc658b063</originalsourceid><addsrcrecordid>eNqNkE9rGzEQxUVooa7b76DQUw7rjLR_pD0ak8YBQw5tz0IrzdZabGkr7Rr87SuzofSYywwMv_eY9wi5Z7BhwJrHYeMGH_zJ-TOaDQfO872CtrkjKyaFLOqmlB_ICoBDIaqGfyKfUxogaysQK_Jje_qNXdTO0AnN0bs_MyaqvaUjxmmOnZ5c8PSM0zHYRKdA9TjGoM2R9hEz7M2VRkxj8AmpmeMF0xfysdenhF_f9pr8-v70c7cvDq_PL7vtoTBVWU1F3WNtbWsF561GVhubl5DcgKw1B4SmK6UAwyrkTFjgpTCM1bo3TS07aMo1eVh8j_qkxujOOl5V0E7ttwd1u0EpqlaW8sIy-21h8_O3iJMawhx9fk_xpmUyD1lnql0oE0NKEft_tgzUrW81qP_6Vre-1dJ31u4WLebIF4dRJeNyPWhdRDMpG9w7XP4Cqq-PVA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2691826985</pqid></control><display><type>article</type><title>Algebraic techniques and perturbation methods to approach frequency response curves</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Lamarque, C.-H. ; Ture Savadkoohi, A.</creator><creatorcontrib>Lamarque, C.-H. ; Ture Savadkoohi, A.</creatorcontrib><description>The Algebra is exploited to study approximated responses of nonlinear dynamical systems leading to tracing solutions of approximated bifurcation diagrams associated with polynomial equations resulting from search of approximated periodic solutions of nonlinear ordinary differential equations. In detail via using the Gröbner basis, a polynomial with the smallest degree in term of the approximated amplitude of the systems, here the L2 norm of coefficients of truncated Fourier series, is extracted where its coefficients are parameters of the systems such as the frequency. The presented methodology permits to detect maximal number of solutions even those which belong to isola of the frequency response curves of the system. •The Algebra is exploited to study approximated periodic responses of nonlinear dynamical systems.•Searching these responses leads to polynomial equations.•Gröbner bases are built from the set of polynomial equations.•A polynomial with the smallest degree in term of the approximated amplitude of the response is extracted.</description><identifier>ISSN: 0020-7462</identifier><identifier>EISSN: 1878-5638</identifier><identifier>DOI: 10.1016/j.ijnonlinmec.2022.104096</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>[formula omitted] norm ; Approximation ; Dynamical systems ; Euclidean division ; Fourier series ; Frequency response ; Gröbner basis ; Mathematical analysis ; Mathematical Physics ; Mechanics ; Nonlinear differential equations ; Nonlinear Sciences ; Nonlinear systems ; Perturbation methods ; Physics ; Polynomial ; Polynomials</subject><ispartof>International journal of non-linear mechanics, 2022-09, Vol.144, p.104096, Article 104096</ispartof><rights>2022 Elsevier Ltd</rights><rights>Copyright Elsevier BV Sep 2022</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-5fe5dd9d7229ae15cd9ae782c085a20e06b3870c14e217d0237c115afc658b063</citedby><cites>FETCH-LOGICAL-c434t-5fe5dd9d7229ae15cd9ae782c085a20e06b3870c14e217d0237c115afc658b063</cites><orcidid>0000-0002-5209-7356</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijnonlinmec.2022.104096$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,315,781,785,886,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03749838$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lamarque, C.-H.</creatorcontrib><creatorcontrib>Ture Savadkoohi, A.</creatorcontrib><title>Algebraic techniques and perturbation methods to approach frequency response curves</title><title>International journal of non-linear mechanics</title><description>The Algebra is exploited to study approximated responses of nonlinear dynamical systems leading to tracing solutions of approximated bifurcation diagrams associated with polynomial equations resulting from search of approximated periodic solutions of nonlinear ordinary differential equations. In detail via using the Gröbner basis, a polynomial with the smallest degree in term of the approximated amplitude of the systems, here the L2 norm of coefficients of truncated Fourier series, is extracted where its coefficients are parameters of the systems such as the frequency. The presented methodology permits to detect maximal number of solutions even those which belong to isola of the frequency response curves of the system. •The Algebra is exploited to study approximated periodic responses of nonlinear dynamical systems.•Searching these responses leads to polynomial equations.•Gröbner bases are built from the set of polynomial equations.•A polynomial with the smallest degree in term of the approximated amplitude of the response is extracted.</description><subject>[formula omitted] norm</subject><subject>Approximation</subject><subject>Dynamical systems</subject><subject>Euclidean division</subject><subject>Fourier series</subject><subject>Frequency response</subject><subject>Gröbner basis</subject><subject>Mathematical analysis</subject><subject>Mathematical Physics</subject><subject>Mechanics</subject><subject>Nonlinear differential equations</subject><subject>Nonlinear Sciences</subject><subject>Nonlinear systems</subject><subject>Perturbation methods</subject><subject>Physics</subject><subject>Polynomial</subject><subject>Polynomials</subject><issn>0020-7462</issn><issn>1878-5638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNkE9rGzEQxUVooa7b76DQUw7rjLR_pD0ak8YBQw5tz0IrzdZabGkr7Rr87SuzofSYywwMv_eY9wi5Z7BhwJrHYeMGH_zJ-TOaDQfO872CtrkjKyaFLOqmlB_ICoBDIaqGfyKfUxogaysQK_Jje_qNXdTO0AnN0bs_MyaqvaUjxmmOnZ5c8PSM0zHYRKdA9TjGoM2R9hEz7M2VRkxj8AmpmeMF0xfysdenhF_f9pr8-v70c7cvDq_PL7vtoTBVWU1F3WNtbWsF561GVhubl5DcgKw1B4SmK6UAwyrkTFjgpTCM1bo3TS07aMo1eVh8j_qkxujOOl5V0E7ttwd1u0EpqlaW8sIy-21h8_O3iJMawhx9fk_xpmUyD1lnql0oE0NKEft_tgzUrW81qP_6Vre-1dJ31u4WLebIF4dRJeNyPWhdRDMpG9w7XP4Cqq-PVA</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Lamarque, C.-H.</creator><creator>Ture Savadkoohi, A.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-5209-7356</orcidid></search><sort><creationdate>20220901</creationdate><title>Algebraic techniques and perturbation methods to approach frequency response curves</title><author>Lamarque, C.-H. ; Ture Savadkoohi, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-5fe5dd9d7229ae15cd9ae782c085a20e06b3870c14e217d0237c115afc658b063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>[formula omitted] norm</topic><topic>Approximation</topic><topic>Dynamical systems</topic><topic>Euclidean division</topic><topic>Fourier series</topic><topic>Frequency response</topic><topic>Gröbner basis</topic><topic>Mathematical analysis</topic><topic>Mathematical Physics</topic><topic>Mechanics</topic><topic>Nonlinear differential equations</topic><topic>Nonlinear Sciences</topic><topic>Nonlinear systems</topic><topic>Perturbation methods</topic><topic>Physics</topic><topic>Polynomial</topic><topic>Polynomials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lamarque, C.-H.</creatorcontrib><creatorcontrib>Ture Savadkoohi, A.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>International journal of non-linear mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lamarque, C.-H.</au><au>Ture Savadkoohi, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Algebraic techniques and perturbation methods to approach frequency response curves</atitle><jtitle>International journal of non-linear mechanics</jtitle><date>2022-09-01</date><risdate>2022</risdate><volume>144</volume><spage>104096</spage><pages>104096-</pages><artnum>104096</artnum><issn>0020-7462</issn><eissn>1878-5638</eissn><abstract>The Algebra is exploited to study approximated responses of nonlinear dynamical systems leading to tracing solutions of approximated bifurcation diagrams associated with polynomial equations resulting from search of approximated periodic solutions of nonlinear ordinary differential equations. In detail via using the Gröbner basis, a polynomial with the smallest degree in term of the approximated amplitude of the systems, here the L2 norm of coefficients of truncated Fourier series, is extracted where its coefficients are parameters of the systems such as the frequency. The presented methodology permits to detect maximal number of solutions even those which belong to isola of the frequency response curves of the system. •The Algebra is exploited to study approximated periodic responses of nonlinear dynamical systems.•Searching these responses leads to polynomial equations.•Gröbner bases are built from the set of polynomial equations.•A polynomial with the smallest degree in term of the approximated amplitude of the response is extracted.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijnonlinmec.2022.104096</doi><orcidid>https://orcid.org/0000-0002-5209-7356</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0020-7462
ispartof International journal of non-linear mechanics, 2022-09, Vol.144, p.104096, Article 104096
issn 0020-7462
1878-5638
language eng
recordid cdi_hal_primary_oai_HAL_hal_03749838v1
source ScienceDirect Journals (5 years ago - present)
subjects [formula omitted] norm
Approximation
Dynamical systems
Euclidean division
Fourier series
Frequency response
Gröbner basis
Mathematical analysis
Mathematical Physics
Mechanics
Nonlinear differential equations
Nonlinear Sciences
Nonlinear systems
Perturbation methods
Physics
Polynomial
Polynomials
title Algebraic techniques and perturbation methods to approach frequency response curves
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T13%3A47%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Algebraic%20techniques%20and%20perturbation%20methods%20to%20approach%20frequency%20response%20curves&rft.jtitle=International%20journal%20of%20non-linear%20mechanics&rft.au=Lamarque,%20C.-H.&rft.date=2022-09-01&rft.volume=144&rft.spage=104096&rft.pages=104096-&rft.artnum=104096&rft.issn=0020-7462&rft.eissn=1878-5638&rft_id=info:doi/10.1016/j.ijnonlinmec.2022.104096&rft_dat=%3Cproquest_hal_p%3E2691826985%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2691826985&rft_id=info:pmid/&rft_els_id=S0020746222001172&rfr_iscdi=true