Benchmark study of simulators for thermo-hydraulic modelling of low enthalpy geothermal processes

•Ten different state-of-the-art geothermal simulator packages were benchmarked via efforts from seven partners from five different countries.•A synthetic test suite was designed for the low-enthalpy range of geothermal operations.•The comparative analysis included: COMSOL, MARTHE, ComPASS, Nexus-CSM...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geothermics 2021-11, Vol.96, p.102130, Article 102130
Hauptverfasser: Mindel, Julian E., Alt-Epping, Peter, Landes, Antoine Armandine Les, Beernink, Stijn, Birdsell, Daniel T., Bloemendal, Martin, Hamm, Virginie, Lopez, Simon, Maragna, Charles, Nielsen, Carsten M., Olivella, Sebastia, Perreaux, Marc, Saaltink, Maarten W., Saar, Martin O., Van den Heuvel, Daniela, Vidal, Rubén, Driesner, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 102130
container_title Geothermics
container_volume 96
creator Mindel, Julian E.
Alt-Epping, Peter
Landes, Antoine Armandine Les
Beernink, Stijn
Birdsell, Daniel T.
Bloemendal, Martin
Hamm, Virginie
Lopez, Simon
Maragna, Charles
Nielsen, Carsten M.
Olivella, Sebastia
Perreaux, Marc
Saaltink, Maarten W.
Saar, Martin O.
Van den Heuvel, Daniela
Vidal, Rubén
Driesner, Thomas
description •Ten different state-of-the-art geothermal simulator packages were benchmarked via efforts from seven partners from five different countries.•A synthetic test suite was designed for the low-enthalpy range of geothermal operations.•The comparative analysis included: COMSOL, MARTHE, ComPASS, Nexus-CSMP++, MOOSE, SEAWATv4, CODE_BRIGHT, Tough3, PFLOTRAN, and Eclipse 100.•A confidence-building high-rate of completion and reasonable accuracy was obtained through efforts from all partners, despite ‘human factor’ effects. In order to assess the thermo-hydraulic modelling capabilities of various geothermal simulators, a comparative test suite was created, consisting of a set of cases designed with conditions relevant to the low-enthalpy range of geothermal operations within the European HEATSTORE research project. In an effort to increase confidence in the usage of each simulator, the suite was used as a benchmark by a set of 10 simulators of diverse origin, formulation, and licensing characteristics: COMSOL, MARTHE, ComPASS, Nexus-CSMP++, MOOSE, SEAWATv4, CODE_BRIGHT, Tough3, PFLOTRAN, and Eclipse 100. The synthetic test cases (TCs) consist of a transient pressure test verification (TC1), a well-test comparison (TC2), a thermal transport experiment validation (TC3), and a convection onset comparison (TC4), chosen to represent well-defined subsets of the coupled physical processes acting in subsurface geothermal operations. The results from the four test cases were compared among the participants, to known analytical solutions, and to experimental measurements where applicable, to establish them as reference expectations for future studies. A basic description, problem specification, and corresponding results are presented and discussed. Most participating simulators were able to perform most tests reliably at a level of accuracy that is considered sufficient for application to modelling tasks in real geothermal projects. Significant relative deviations from the reference solutions occurred where strong, sudden (e.g. initial) gradients affected the accuracy of the numerical discretization, but also due to sub-optimal model setup caused by simulator limitations (e.g. providing an equation of state for water properties).
doi_str_mv 10.1016/j.geothermics.2021.102130
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03744677v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0375650521000900</els_id><sourcerecordid>2583116764</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-6cc3b27219d792ec95773cc518253002ad6704c8265ce344cd4e7f81730613e23</originalsourceid><addsrcrecordid>eNqNkE1LAzEQhoMoWKv_IeLJw9Z8Z_eoRa1Q8KLnELOzbeq2qcmu0n9v6qp49DQwPPPyzoPQOSUTSqi6Wk0WELolxLV3acIIo3nPKCcHaERLXRVcanWIRoRrWShJ5DE6SWlFCNFSkxGyN7Bxy7WNrzh1fb3DocHJr_vWdiEm3ISIv9JDsdzV0fatd3gdamhbv1ns4TZ8YNh0S9tud_ini23xNgYHKUE6RUeNbROcfc8xer67fZrOivnj_cP0el44wUVXKOf4C9OMVrWuGLhKas2dk7RkkhPCbK00Ea5kSjrgQrhagG5KqjlRlAPjY3Q55OYqZht9_mlngvVmdj03-11WIITS-p1m9mJgc8u3HlJnVqGPm1zPMFlySpVWIlPVQLkYUorQ_MZSYvb2zcr8sW_29s1gP99Oh1vIL797iCY5n1VD7SO4ztTB_yPlE_36k5E</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2583116764</pqid></control><display><type>article</type><title>Benchmark study of simulators for thermo-hydraulic modelling of low enthalpy geothermal processes</title><source>Access via ScienceDirect (Elsevier)</source><creator>Mindel, Julian E. ; Alt-Epping, Peter ; Landes, Antoine Armandine Les ; Beernink, Stijn ; Birdsell, Daniel T. ; Bloemendal, Martin ; Hamm, Virginie ; Lopez, Simon ; Maragna, Charles ; Nielsen, Carsten M. ; Olivella, Sebastia ; Perreaux, Marc ; Saaltink, Maarten W. ; Saar, Martin O. ; Van den Heuvel, Daniela ; Vidal, Rubén ; Driesner, Thomas</creator><creatorcontrib>Mindel, Julian E. ; Alt-Epping, Peter ; Landes, Antoine Armandine Les ; Beernink, Stijn ; Birdsell, Daniel T. ; Bloemendal, Martin ; Hamm, Virginie ; Lopez, Simon ; Maragna, Charles ; Nielsen, Carsten M. ; Olivella, Sebastia ; Perreaux, Marc ; Saaltink, Maarten W. ; Saar, Martin O. ; Van den Heuvel, Daniela ; Vidal, Rubén ; Driesner, Thomas</creatorcontrib><description>•Ten different state-of-the-art geothermal simulator packages were benchmarked via efforts from seven partners from five different countries.•A synthetic test suite was designed for the low-enthalpy range of geothermal operations.•The comparative analysis included: COMSOL, MARTHE, ComPASS, Nexus-CSMP++, MOOSE, SEAWATv4, CODE_BRIGHT, Tough3, PFLOTRAN, and Eclipse 100.•A confidence-building high-rate of completion and reasonable accuracy was obtained through efforts from all partners, despite ‘human factor’ effects. In order to assess the thermo-hydraulic modelling capabilities of various geothermal simulators, a comparative test suite was created, consisting of a set of cases designed with conditions relevant to the low-enthalpy range of geothermal operations within the European HEATSTORE research project. In an effort to increase confidence in the usage of each simulator, the suite was used as a benchmark by a set of 10 simulators of diverse origin, formulation, and licensing characteristics: COMSOL, MARTHE, ComPASS, Nexus-CSMP++, MOOSE, SEAWATv4, CODE_BRIGHT, Tough3, PFLOTRAN, and Eclipse 100. The synthetic test cases (TCs) consist of a transient pressure test verification (TC1), a well-test comparison (TC2), a thermal transport experiment validation (TC3), and a convection onset comparison (TC4), chosen to represent well-defined subsets of the coupled physical processes acting in subsurface geothermal operations. The results from the four test cases were compared among the participants, to known analytical solutions, and to experimental measurements where applicable, to establish them as reference expectations for future studies. A basic description, problem specification, and corresponding results are presented and discussed. Most participating simulators were able to perform most tests reliably at a level of accuracy that is considered sufficient for application to modelling tasks in real geothermal projects. Significant relative deviations from the reference solutions occurred where strong, sudden (e.g. initial) gradients affected the accuracy of the numerical discretization, but also due to sub-optimal model setup caused by simulator limitations (e.g. providing an equation of state for water properties).</description><identifier>ISSN: 0375-6505</identifier><identifier>EISSN: 1879-3576</identifier><identifier>DOI: 10.1016/j.geothermics.2021.102130</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Benchmarks ; Convection ; Earth Sciences ; Enthalpy ; Equations of state ; Exact solutions ; Geothermal power ; Research projects ; Sciences of the Universe ; Simulation ; Simulators ; Software testing ; Water properties</subject><ispartof>Geothermics, 2021-11, Vol.96, p.102130, Article 102130</ispartof><rights>2021</rights><rights>Copyright Elsevier Science Ltd. Nov 2021</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-6cc3b27219d792ec95773cc518253002ad6704c8265ce344cd4e7f81730613e23</citedby><cites>FETCH-LOGICAL-c434t-6cc3b27219d792ec95773cc518253002ad6704c8265ce344cd4e7f81730613e23</cites><orcidid>0000-0001-7355-1012 ; 0000-0003-1129-4780 ; 0000-0003-4131-325X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.geothermics.2021.102130$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://brgm.hal.science/hal-03744677$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Mindel, Julian E.</creatorcontrib><creatorcontrib>Alt-Epping, Peter</creatorcontrib><creatorcontrib>Landes, Antoine Armandine Les</creatorcontrib><creatorcontrib>Beernink, Stijn</creatorcontrib><creatorcontrib>Birdsell, Daniel T.</creatorcontrib><creatorcontrib>Bloemendal, Martin</creatorcontrib><creatorcontrib>Hamm, Virginie</creatorcontrib><creatorcontrib>Lopez, Simon</creatorcontrib><creatorcontrib>Maragna, Charles</creatorcontrib><creatorcontrib>Nielsen, Carsten M.</creatorcontrib><creatorcontrib>Olivella, Sebastia</creatorcontrib><creatorcontrib>Perreaux, Marc</creatorcontrib><creatorcontrib>Saaltink, Maarten W.</creatorcontrib><creatorcontrib>Saar, Martin O.</creatorcontrib><creatorcontrib>Van den Heuvel, Daniela</creatorcontrib><creatorcontrib>Vidal, Rubén</creatorcontrib><creatorcontrib>Driesner, Thomas</creatorcontrib><title>Benchmark study of simulators for thermo-hydraulic modelling of low enthalpy geothermal processes</title><title>Geothermics</title><description>•Ten different state-of-the-art geothermal simulator packages were benchmarked via efforts from seven partners from five different countries.•A synthetic test suite was designed for the low-enthalpy range of geothermal operations.•The comparative analysis included: COMSOL, MARTHE, ComPASS, Nexus-CSMP++, MOOSE, SEAWATv4, CODE_BRIGHT, Tough3, PFLOTRAN, and Eclipse 100.•A confidence-building high-rate of completion and reasonable accuracy was obtained through efforts from all partners, despite ‘human factor’ effects. In order to assess the thermo-hydraulic modelling capabilities of various geothermal simulators, a comparative test suite was created, consisting of a set of cases designed with conditions relevant to the low-enthalpy range of geothermal operations within the European HEATSTORE research project. In an effort to increase confidence in the usage of each simulator, the suite was used as a benchmark by a set of 10 simulators of diverse origin, formulation, and licensing characteristics: COMSOL, MARTHE, ComPASS, Nexus-CSMP++, MOOSE, SEAWATv4, CODE_BRIGHT, Tough3, PFLOTRAN, and Eclipse 100. The synthetic test cases (TCs) consist of a transient pressure test verification (TC1), a well-test comparison (TC2), a thermal transport experiment validation (TC3), and a convection onset comparison (TC4), chosen to represent well-defined subsets of the coupled physical processes acting in subsurface geothermal operations. The results from the four test cases were compared among the participants, to known analytical solutions, and to experimental measurements where applicable, to establish them as reference expectations for future studies. A basic description, problem specification, and corresponding results are presented and discussed. Most participating simulators were able to perform most tests reliably at a level of accuracy that is considered sufficient for application to modelling tasks in real geothermal projects. Significant relative deviations from the reference solutions occurred where strong, sudden (e.g. initial) gradients affected the accuracy of the numerical discretization, but also due to sub-optimal model setup caused by simulator limitations (e.g. providing an equation of state for water properties).</description><subject>Benchmarks</subject><subject>Convection</subject><subject>Earth Sciences</subject><subject>Enthalpy</subject><subject>Equations of state</subject><subject>Exact solutions</subject><subject>Geothermal power</subject><subject>Research projects</subject><subject>Sciences of the Universe</subject><subject>Simulation</subject><subject>Simulators</subject><subject>Software testing</subject><subject>Water properties</subject><issn>0375-6505</issn><issn>1879-3576</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNkE1LAzEQhoMoWKv_IeLJw9Z8Z_eoRa1Q8KLnELOzbeq2qcmu0n9v6qp49DQwPPPyzoPQOSUTSqi6Wk0WELolxLV3acIIo3nPKCcHaERLXRVcanWIRoRrWShJ5DE6SWlFCNFSkxGyN7Bxy7WNrzh1fb3DocHJr_vWdiEm3ISIv9JDsdzV0fatd3gdamhbv1ns4TZ8YNh0S9tud_ini23xNgYHKUE6RUeNbROcfc8xer67fZrOivnj_cP0el44wUVXKOf4C9OMVrWuGLhKas2dk7RkkhPCbK00Ea5kSjrgQrhagG5KqjlRlAPjY3Q55OYqZht9_mlngvVmdj03-11WIITS-p1m9mJgc8u3HlJnVqGPm1zPMFlySpVWIlPVQLkYUorQ_MZSYvb2zcr8sW_29s1gP99Oh1vIL797iCY5n1VD7SO4ztTB_yPlE_36k5E</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Mindel, Julian E.</creator><creator>Alt-Epping, Peter</creator><creator>Landes, Antoine Armandine Les</creator><creator>Beernink, Stijn</creator><creator>Birdsell, Daniel T.</creator><creator>Bloemendal, Martin</creator><creator>Hamm, Virginie</creator><creator>Lopez, Simon</creator><creator>Maragna, Charles</creator><creator>Nielsen, Carsten M.</creator><creator>Olivella, Sebastia</creator><creator>Perreaux, Marc</creator><creator>Saaltink, Maarten W.</creator><creator>Saar, Martin O.</creator><creator>Van den Heuvel, Daniela</creator><creator>Vidal, Rubén</creator><creator>Driesner, Thomas</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>SOI</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-7355-1012</orcidid><orcidid>https://orcid.org/0000-0003-1129-4780</orcidid><orcidid>https://orcid.org/0000-0003-4131-325X</orcidid></search><sort><creationdate>20211101</creationdate><title>Benchmark study of simulators for thermo-hydraulic modelling of low enthalpy geothermal processes</title><author>Mindel, Julian E. ; Alt-Epping, Peter ; Landes, Antoine Armandine Les ; Beernink, Stijn ; Birdsell, Daniel T. ; Bloemendal, Martin ; Hamm, Virginie ; Lopez, Simon ; Maragna, Charles ; Nielsen, Carsten M. ; Olivella, Sebastia ; Perreaux, Marc ; Saaltink, Maarten W. ; Saar, Martin O. ; Van den Heuvel, Daniela ; Vidal, Rubén ; Driesner, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-6cc3b27219d792ec95773cc518253002ad6704c8265ce344cd4e7f81730613e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Benchmarks</topic><topic>Convection</topic><topic>Earth Sciences</topic><topic>Enthalpy</topic><topic>Equations of state</topic><topic>Exact solutions</topic><topic>Geothermal power</topic><topic>Research projects</topic><topic>Sciences of the Universe</topic><topic>Simulation</topic><topic>Simulators</topic><topic>Software testing</topic><topic>Water properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mindel, Julian E.</creatorcontrib><creatorcontrib>Alt-Epping, Peter</creatorcontrib><creatorcontrib>Landes, Antoine Armandine Les</creatorcontrib><creatorcontrib>Beernink, Stijn</creatorcontrib><creatorcontrib>Birdsell, Daniel T.</creatorcontrib><creatorcontrib>Bloemendal, Martin</creatorcontrib><creatorcontrib>Hamm, Virginie</creatorcontrib><creatorcontrib>Lopez, Simon</creatorcontrib><creatorcontrib>Maragna, Charles</creatorcontrib><creatorcontrib>Nielsen, Carsten M.</creatorcontrib><creatorcontrib>Olivella, Sebastia</creatorcontrib><creatorcontrib>Perreaux, Marc</creatorcontrib><creatorcontrib>Saaltink, Maarten W.</creatorcontrib><creatorcontrib>Saar, Martin O.</creatorcontrib><creatorcontrib>Van den Heuvel, Daniela</creatorcontrib><creatorcontrib>Vidal, Rubén</creatorcontrib><creatorcontrib>Driesner, Thomas</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Geothermics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mindel, Julian E.</au><au>Alt-Epping, Peter</au><au>Landes, Antoine Armandine Les</au><au>Beernink, Stijn</au><au>Birdsell, Daniel T.</au><au>Bloemendal, Martin</au><au>Hamm, Virginie</au><au>Lopez, Simon</au><au>Maragna, Charles</au><au>Nielsen, Carsten M.</au><au>Olivella, Sebastia</au><au>Perreaux, Marc</au><au>Saaltink, Maarten W.</au><au>Saar, Martin O.</au><au>Van den Heuvel, Daniela</au><au>Vidal, Rubén</au><au>Driesner, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Benchmark study of simulators for thermo-hydraulic modelling of low enthalpy geothermal processes</atitle><jtitle>Geothermics</jtitle><date>2021-11-01</date><risdate>2021</risdate><volume>96</volume><spage>102130</spage><pages>102130-</pages><artnum>102130</artnum><issn>0375-6505</issn><eissn>1879-3576</eissn><abstract>•Ten different state-of-the-art geothermal simulator packages were benchmarked via efforts from seven partners from five different countries.•A synthetic test suite was designed for the low-enthalpy range of geothermal operations.•The comparative analysis included: COMSOL, MARTHE, ComPASS, Nexus-CSMP++, MOOSE, SEAWATv4, CODE_BRIGHT, Tough3, PFLOTRAN, and Eclipse 100.•A confidence-building high-rate of completion and reasonable accuracy was obtained through efforts from all partners, despite ‘human factor’ effects. In order to assess the thermo-hydraulic modelling capabilities of various geothermal simulators, a comparative test suite was created, consisting of a set of cases designed with conditions relevant to the low-enthalpy range of geothermal operations within the European HEATSTORE research project. In an effort to increase confidence in the usage of each simulator, the suite was used as a benchmark by a set of 10 simulators of diverse origin, formulation, and licensing characteristics: COMSOL, MARTHE, ComPASS, Nexus-CSMP++, MOOSE, SEAWATv4, CODE_BRIGHT, Tough3, PFLOTRAN, and Eclipse 100. The synthetic test cases (TCs) consist of a transient pressure test verification (TC1), a well-test comparison (TC2), a thermal transport experiment validation (TC3), and a convection onset comparison (TC4), chosen to represent well-defined subsets of the coupled physical processes acting in subsurface geothermal operations. The results from the four test cases were compared among the participants, to known analytical solutions, and to experimental measurements where applicable, to establish them as reference expectations for future studies. A basic description, problem specification, and corresponding results are presented and discussed. Most participating simulators were able to perform most tests reliably at a level of accuracy that is considered sufficient for application to modelling tasks in real geothermal projects. Significant relative deviations from the reference solutions occurred where strong, sudden (e.g. initial) gradients affected the accuracy of the numerical discretization, but also due to sub-optimal model setup caused by simulator limitations (e.g. providing an equation of state for water properties).</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.geothermics.2021.102130</doi><orcidid>https://orcid.org/0000-0001-7355-1012</orcidid><orcidid>https://orcid.org/0000-0003-1129-4780</orcidid><orcidid>https://orcid.org/0000-0003-4131-325X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0375-6505
ispartof Geothermics, 2021-11, Vol.96, p.102130, Article 102130
issn 0375-6505
1879-3576
language eng
recordid cdi_hal_primary_oai_HAL_hal_03744677v1
source Access via ScienceDirect (Elsevier)
subjects Benchmarks
Convection
Earth Sciences
Enthalpy
Equations of state
Exact solutions
Geothermal power
Research projects
Sciences of the Universe
Simulation
Simulators
Software testing
Water properties
title Benchmark study of simulators for thermo-hydraulic modelling of low enthalpy geothermal processes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T00%3A53%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Benchmark%20study%20of%20simulators%20for%20thermo-hydraulic%20modelling%20of%20low%20enthalpy%20geothermal%20processes&rft.jtitle=Geothermics&rft.au=Mindel,%20Julian%20E.&rft.date=2021-11-01&rft.volume=96&rft.spage=102130&rft.pages=102130-&rft.artnum=102130&rft.issn=0375-6505&rft.eissn=1879-3576&rft_id=info:doi/10.1016/j.geothermics.2021.102130&rft_dat=%3Cproquest_hal_p%3E2583116764%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2583116764&rft_id=info:pmid/&rft_els_id=S0375650521000900&rfr_iscdi=true