Microgliosis: a double‐edged sword in the control of food intake

Maintaining energy balance is essential for survival and health. This physiological function is controlled by the brain, which adapts food intake to energy needs. Indeed, the brain constantly receives a multitude of biological signals that are derived from digested foods or that originate from the g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The FEBS journal 2024-02, Vol.291 (4), p.615-631
Hauptverfasser: Salvi, Juliette, Andreoletti, Pierre, Audinat, Etienne, Balland, Eglantine, Ben Fradj, Selma, Cherkaoui‐Malki, Mustapha, Heurtaux, Tony, Liénard, Fabienne, Nédélec, Emmanuelle, Rovère, Carole, Savary, Stéphane, Véjux, Anne, Trompier, Doriane, Benani, Alexandre
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 631
container_issue 4
container_start_page 615
container_title The FEBS journal
container_volume 291
creator Salvi, Juliette
Andreoletti, Pierre
Audinat, Etienne
Balland, Eglantine
Ben Fradj, Selma
Cherkaoui‐Malki, Mustapha
Heurtaux, Tony
Liénard, Fabienne
Nédélec, Emmanuelle
Rovère, Carole
Savary, Stéphane
Véjux, Anne
Trompier, Doriane
Benani, Alexandre
description Maintaining energy balance is essential for survival and health. This physiological function is controlled by the brain, which adapts food intake to energy needs. Indeed, the brain constantly receives a multitude of biological signals that are derived from digested foods or that originate from the gastrointestinal tract, energy stores (liver and adipose tissues) and other metabolically active organs (muscles). These signals, which include circulating nutrients, hormones and neuronal inputs from the periphery, collectively provide information on the overall energy status of the body. In the brain, several neuronal populations can specifically detect these signals. Nutrient‐sensing neurons are found in discrete brain areas and are highly enriched in the hypothalamus. In turn, specialized brain circuits coordinate homeostatic responses acting mainly on appetite, peripheral metabolism, activity and arousal. Accumulating evidence shows that hypothalamic microglial cells located at the vicinity of these circuits can influence the brain control of energy balance. However, microglial cells could have opposite effects on energy balance, that is homeostatic or detrimental, and the conditions for this shift are not totally understood yet. One hypothesis relies on the extent of microglial activation, and nutritional lipids can considerably change it. Under physiological conditions, microglia are small cells that exhibit fine and ramified branches oriented radially from a small soma. These cells are highly dynamic and can undergo rapid morphological remodelling. Activated microglia during injury or infection are ameboid, with rounded swollen soma without branching. During high‐fat diet consumption, microglia can become large with highly ramified processes. This response, referred to as fat‐induced microgliosis, is triggered by nutritional lipids.
doi_str_mv 10.1111/febs.16583
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03739689v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2926387094</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4273-b5c64562084f0085421137f9c7e95d3404af77692496a57381e72a01be77c9b03</originalsourceid><addsrcrecordid>eNp90c9OwjAcB_DGaATRiw9glnhRk2H_rq03ICAmGA9q4q3ptg6Gg-K6Sbj5CD6jT-LmkIMHe2n7yyfftL8fAKcIdlG1rhMTui4KmCB7oI04xT6tLvu7M31pgSPn5hASRqU8BC3ChIAUijbo36dRbqdZal3qbjztxbYMM_P18WniqYk9t7Z57KVLr5gZL7LLIreZZxMvsbYuF_rVHIODRGfOnGz3DngeDZ8GY3_ycHs36E38iGJO_JBFAWUBhoImEApGMUKEJzLiRrKYUEh1wnkgMZWBZpwIZDjWEIWG80iGkHTAZZM705la5elC5xtldarGvYmqa5BwIgMh31FlLxq7yu1baVyhFqmLTJbppbGlUziQVDLJeU3P_9C5LfNl9ROFJQ6I4FDSSl01quqWc7lJdi9AUNVTUPUU1M8UKny2jSzDhYl39LftFUANWKeZ2fwTpUbD_mMT-g12ZY7d</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2926387094</pqid></control><display><type>article</type><title>Microgliosis: a double‐edged sword in the control of food intake</title><source>Access via Wiley Online Library</source><creator>Salvi, Juliette ; Andreoletti, Pierre ; Audinat, Etienne ; Balland, Eglantine ; Ben Fradj, Selma ; Cherkaoui‐Malki, Mustapha ; Heurtaux, Tony ; Liénard, Fabienne ; Nédélec, Emmanuelle ; Rovère, Carole ; Savary, Stéphane ; Véjux, Anne ; Trompier, Doriane ; Benani, Alexandre</creator><creatorcontrib>Salvi, Juliette ; Andreoletti, Pierre ; Audinat, Etienne ; Balland, Eglantine ; Ben Fradj, Selma ; Cherkaoui‐Malki, Mustapha ; Heurtaux, Tony ; Liénard, Fabienne ; Nédélec, Emmanuelle ; Rovère, Carole ; Savary, Stéphane ; Véjux, Anne ; Trompier, Doriane ; Benani, Alexandre</creatorcontrib><description>Maintaining energy balance is essential for survival and health. This physiological function is controlled by the brain, which adapts food intake to energy needs. Indeed, the brain constantly receives a multitude of biological signals that are derived from digested foods or that originate from the gastrointestinal tract, energy stores (liver and adipose tissues) and other metabolically active organs (muscles). These signals, which include circulating nutrients, hormones and neuronal inputs from the periphery, collectively provide information on the overall energy status of the body. In the brain, several neuronal populations can specifically detect these signals. Nutrient‐sensing neurons are found in discrete brain areas and are highly enriched in the hypothalamus. In turn, specialized brain circuits coordinate homeostatic responses acting mainly on appetite, peripheral metabolism, activity and arousal. Accumulating evidence shows that hypothalamic microglial cells located at the vicinity of these circuits can influence the brain control of energy balance. However, microglial cells could have opposite effects on energy balance, that is homeostatic or detrimental, and the conditions for this shift are not totally understood yet. One hypothesis relies on the extent of microglial activation, and nutritional lipids can considerably change it. Under physiological conditions, microglia are small cells that exhibit fine and ramified branches oriented radially from a small soma. These cells are highly dynamic and can undergo rapid morphological remodelling. Activated microglia during injury or infection are ameboid, with rounded swollen soma without branching. During high‐fat diet consumption, microglia can become large with highly ramified processes. This response, referred to as fat‐induced microgliosis, is triggered by nutritional lipids.</description><identifier>ISSN: 1742-464X</identifier><identifier>EISSN: 1742-4658</identifier><identifier>DOI: 10.1111/febs.16583</identifier><identifier>PMID: 35880408</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Adipose tissue ; Arousal ; Brain ; Circuits ; eating disorders ; Energy ; Energy balance ; energy homeostasis ; Food ; Food intake ; Gastrointestinal system ; Gastrointestinal tract ; Hormones ; Human health and pathology ; Hypothalamus ; inflammation ; Life Sciences ; Lipids ; Microglia ; Microglial cells ; Muscles ; Neurons and Cognition ; Nutrients ; Tissues and Organs</subject><ispartof>The FEBS journal, 2024-02, Vol.291 (4), p.615-631</ispartof><rights>2022 The Authors. published by John Wiley &amp; Sons Ltd on behalf of Federation of European Biochemical Societies.</rights><rights>2022 The Authors. The FEBS Journal published by John Wiley &amp; Sons Ltd on behalf of Federation of European Biochemical Societies.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4273-b5c64562084f0085421137f9c7e95d3404af77692496a57381e72a01be77c9b03</citedby><cites>FETCH-LOGICAL-c4273-b5c64562084f0085421137f9c7e95d3404af77692496a57381e72a01be77c9b03</cites><orcidid>0000-0003-2046-0162 ; 0000-0002-9237-1727 ; 0000-0003-2118-7858 ; 0000-0002-6389-422X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Ffebs.16583$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Ffebs.16583$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35880408$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03739689$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Salvi, Juliette</creatorcontrib><creatorcontrib>Andreoletti, Pierre</creatorcontrib><creatorcontrib>Audinat, Etienne</creatorcontrib><creatorcontrib>Balland, Eglantine</creatorcontrib><creatorcontrib>Ben Fradj, Selma</creatorcontrib><creatorcontrib>Cherkaoui‐Malki, Mustapha</creatorcontrib><creatorcontrib>Heurtaux, Tony</creatorcontrib><creatorcontrib>Liénard, Fabienne</creatorcontrib><creatorcontrib>Nédélec, Emmanuelle</creatorcontrib><creatorcontrib>Rovère, Carole</creatorcontrib><creatorcontrib>Savary, Stéphane</creatorcontrib><creatorcontrib>Véjux, Anne</creatorcontrib><creatorcontrib>Trompier, Doriane</creatorcontrib><creatorcontrib>Benani, Alexandre</creatorcontrib><title>Microgliosis: a double‐edged sword in the control of food intake</title><title>The FEBS journal</title><addtitle>FEBS J</addtitle><description>Maintaining energy balance is essential for survival and health. This physiological function is controlled by the brain, which adapts food intake to energy needs. Indeed, the brain constantly receives a multitude of biological signals that are derived from digested foods or that originate from the gastrointestinal tract, energy stores (liver and adipose tissues) and other metabolically active organs (muscles). These signals, which include circulating nutrients, hormones and neuronal inputs from the periphery, collectively provide information on the overall energy status of the body. In the brain, several neuronal populations can specifically detect these signals. Nutrient‐sensing neurons are found in discrete brain areas and are highly enriched in the hypothalamus. In turn, specialized brain circuits coordinate homeostatic responses acting mainly on appetite, peripheral metabolism, activity and arousal. Accumulating evidence shows that hypothalamic microglial cells located at the vicinity of these circuits can influence the brain control of energy balance. However, microglial cells could have opposite effects on energy balance, that is homeostatic or detrimental, and the conditions for this shift are not totally understood yet. One hypothesis relies on the extent of microglial activation, and nutritional lipids can considerably change it. Under physiological conditions, microglia are small cells that exhibit fine and ramified branches oriented radially from a small soma. These cells are highly dynamic and can undergo rapid morphological remodelling. Activated microglia during injury or infection are ameboid, with rounded swollen soma without branching. During high‐fat diet consumption, microglia can become large with highly ramified processes. This response, referred to as fat‐induced microgliosis, is triggered by nutritional lipids.</description><subject>Adipose tissue</subject><subject>Arousal</subject><subject>Brain</subject><subject>Circuits</subject><subject>eating disorders</subject><subject>Energy</subject><subject>Energy balance</subject><subject>energy homeostasis</subject><subject>Food</subject><subject>Food intake</subject><subject>Gastrointestinal system</subject><subject>Gastrointestinal tract</subject><subject>Hormones</subject><subject>Human health and pathology</subject><subject>Hypothalamus</subject><subject>inflammation</subject><subject>Life Sciences</subject><subject>Lipids</subject><subject>Microglia</subject><subject>Microglial cells</subject><subject>Muscles</subject><subject>Neurons and Cognition</subject><subject>Nutrients</subject><subject>Tissues and Organs</subject><issn>1742-464X</issn><issn>1742-4658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp90c9OwjAcB_DGaATRiw9glnhRk2H_rq03ICAmGA9q4q3ptg6Gg-K6Sbj5CD6jT-LmkIMHe2n7yyfftL8fAKcIdlG1rhMTui4KmCB7oI04xT6tLvu7M31pgSPn5hASRqU8BC3ChIAUijbo36dRbqdZal3qbjztxbYMM_P18WniqYk9t7Z57KVLr5gZL7LLIreZZxMvsbYuF_rVHIODRGfOnGz3DngeDZ8GY3_ycHs36E38iGJO_JBFAWUBhoImEApGMUKEJzLiRrKYUEh1wnkgMZWBZpwIZDjWEIWG80iGkHTAZZM705la5elC5xtldarGvYmqa5BwIgMh31FlLxq7yu1baVyhFqmLTJbppbGlUziQVDLJeU3P_9C5LfNl9ROFJQ6I4FDSSl01quqWc7lJdi9AUNVTUPUU1M8UKny2jSzDhYl39LftFUANWKeZ2fwTpUbD_mMT-g12ZY7d</recordid><startdate>202402</startdate><enddate>202402</enddate><creator>Salvi, Juliette</creator><creator>Andreoletti, Pierre</creator><creator>Audinat, Etienne</creator><creator>Balland, Eglantine</creator><creator>Ben Fradj, Selma</creator><creator>Cherkaoui‐Malki, Mustapha</creator><creator>Heurtaux, Tony</creator><creator>Liénard, Fabienne</creator><creator>Nédélec, Emmanuelle</creator><creator>Rovère, Carole</creator><creator>Savary, Stéphane</creator><creator>Véjux, Anne</creator><creator>Trompier, Doriane</creator><creator>Benani, Alexandre</creator><general>Blackwell Publishing Ltd</general><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-2046-0162</orcidid><orcidid>https://orcid.org/0000-0002-9237-1727</orcidid><orcidid>https://orcid.org/0000-0003-2118-7858</orcidid><orcidid>https://orcid.org/0000-0002-6389-422X</orcidid></search><sort><creationdate>202402</creationdate><title>Microgliosis: a double‐edged sword in the control of food intake</title><author>Salvi, Juliette ; Andreoletti, Pierre ; Audinat, Etienne ; Balland, Eglantine ; Ben Fradj, Selma ; Cherkaoui‐Malki, Mustapha ; Heurtaux, Tony ; Liénard, Fabienne ; Nédélec, Emmanuelle ; Rovère, Carole ; Savary, Stéphane ; Véjux, Anne ; Trompier, Doriane ; Benani, Alexandre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4273-b5c64562084f0085421137f9c7e95d3404af77692496a57381e72a01be77c9b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adipose tissue</topic><topic>Arousal</topic><topic>Brain</topic><topic>Circuits</topic><topic>eating disorders</topic><topic>Energy</topic><topic>Energy balance</topic><topic>energy homeostasis</topic><topic>Food</topic><topic>Food intake</topic><topic>Gastrointestinal system</topic><topic>Gastrointestinal tract</topic><topic>Hormones</topic><topic>Human health and pathology</topic><topic>Hypothalamus</topic><topic>inflammation</topic><topic>Life Sciences</topic><topic>Lipids</topic><topic>Microglia</topic><topic>Microglial cells</topic><topic>Muscles</topic><topic>Neurons and Cognition</topic><topic>Nutrients</topic><topic>Tissues and Organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salvi, Juliette</creatorcontrib><creatorcontrib>Andreoletti, Pierre</creatorcontrib><creatorcontrib>Audinat, Etienne</creatorcontrib><creatorcontrib>Balland, Eglantine</creatorcontrib><creatorcontrib>Ben Fradj, Selma</creatorcontrib><creatorcontrib>Cherkaoui‐Malki, Mustapha</creatorcontrib><creatorcontrib>Heurtaux, Tony</creatorcontrib><creatorcontrib>Liénard, Fabienne</creatorcontrib><creatorcontrib>Nédélec, Emmanuelle</creatorcontrib><creatorcontrib>Rovère, Carole</creatorcontrib><creatorcontrib>Savary, Stéphane</creatorcontrib><creatorcontrib>Véjux, Anne</creatorcontrib><creatorcontrib>Trompier, Doriane</creatorcontrib><creatorcontrib>Benani, Alexandre</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>The FEBS journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salvi, Juliette</au><au>Andreoletti, Pierre</au><au>Audinat, Etienne</au><au>Balland, Eglantine</au><au>Ben Fradj, Selma</au><au>Cherkaoui‐Malki, Mustapha</au><au>Heurtaux, Tony</au><au>Liénard, Fabienne</au><au>Nédélec, Emmanuelle</au><au>Rovère, Carole</au><au>Savary, Stéphane</au><au>Véjux, Anne</au><au>Trompier, Doriane</au><au>Benani, Alexandre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microgliosis: a double‐edged sword in the control of food intake</atitle><jtitle>The FEBS journal</jtitle><addtitle>FEBS J</addtitle><date>2024-02</date><risdate>2024</risdate><volume>291</volume><issue>4</issue><spage>615</spage><epage>631</epage><pages>615-631</pages><issn>1742-464X</issn><eissn>1742-4658</eissn><abstract>Maintaining energy balance is essential for survival and health. This physiological function is controlled by the brain, which adapts food intake to energy needs. Indeed, the brain constantly receives a multitude of biological signals that are derived from digested foods or that originate from the gastrointestinal tract, energy stores (liver and adipose tissues) and other metabolically active organs (muscles). These signals, which include circulating nutrients, hormones and neuronal inputs from the periphery, collectively provide information on the overall energy status of the body. In the brain, several neuronal populations can specifically detect these signals. Nutrient‐sensing neurons are found in discrete brain areas and are highly enriched in the hypothalamus. In turn, specialized brain circuits coordinate homeostatic responses acting mainly on appetite, peripheral metabolism, activity and arousal. Accumulating evidence shows that hypothalamic microglial cells located at the vicinity of these circuits can influence the brain control of energy balance. However, microglial cells could have opposite effects on energy balance, that is homeostatic or detrimental, and the conditions for this shift are not totally understood yet. One hypothesis relies on the extent of microglial activation, and nutritional lipids can considerably change it. Under physiological conditions, microglia are small cells that exhibit fine and ramified branches oriented radially from a small soma. These cells are highly dynamic and can undergo rapid morphological remodelling. Activated microglia during injury or infection are ameboid, with rounded swollen soma without branching. During high‐fat diet consumption, microglia can become large with highly ramified processes. This response, referred to as fat‐induced microgliosis, is triggered by nutritional lipids.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>35880408</pmid><doi>10.1111/febs.16583</doi><tpages>631</tpages><orcidid>https://orcid.org/0000-0003-2046-0162</orcidid><orcidid>https://orcid.org/0000-0002-9237-1727</orcidid><orcidid>https://orcid.org/0000-0003-2118-7858</orcidid><orcidid>https://orcid.org/0000-0002-6389-422X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-464X
ispartof The FEBS journal, 2024-02, Vol.291 (4), p.615-631
issn 1742-464X
1742-4658
language eng
recordid cdi_hal_primary_oai_HAL_hal_03739689v1
source Access via Wiley Online Library
subjects Adipose tissue
Arousal
Brain
Circuits
eating disorders
Energy
Energy balance
energy homeostasis
Food
Food intake
Gastrointestinal system
Gastrointestinal tract
Hormones
Human health and pathology
Hypothalamus
inflammation
Life Sciences
Lipids
Microglia
Microglial cells
Muscles
Neurons and Cognition
Nutrients
Tissues and Organs
title Microgliosis: a double‐edged sword in the control of food intake
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T06%3A20%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microgliosis:%20a%20double%E2%80%90edged%20sword%20in%20the%20control%20of%20food%20intake&rft.jtitle=The%20FEBS%20journal&rft.au=Salvi,%20Juliette&rft.date=2024-02&rft.volume=291&rft.issue=4&rft.spage=615&rft.epage=631&rft.pages=615-631&rft.issn=1742-464X&rft.eissn=1742-4658&rft_id=info:doi/10.1111/febs.16583&rft_dat=%3Cproquest_hal_p%3E2926387094%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2926387094&rft_id=info:pmid/35880408&rfr_iscdi=true