Homogeneous superstrings with retract $CP^{1|4}

Any complex-analytic supermanifold whose retract is diffeomorphic to the complex projective superline (superstring) $CP^{1|4}$ is, up to a diffeomorphism, either a member of a 1-parameter family or one of 9 exceptional supermanifolds. I singled out the homogeneous of these supermanifolds and describ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in Mathematics 2023-01, Vol.30 (2022), Issue 3...
1. Verfasser: Bashkin, Mikhail
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Communications in Mathematics
container_volume 30 (2022), Issue 3...
creator Bashkin, Mikhail
description Any complex-analytic supermanifold whose retract is diffeomorphic to the complex projective superline (superstring) $CP^{1|4}$ is, up to a diffeomorphism, either a member of a 1-parameter family or one of 9 exceptional supermanifolds. I singled out the homogeneous of these supermanifolds and described Lie superalgebras of vector fields on them.
doi_str_mv 10.46298/cm.9842
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03726583v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_03726583v2</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1712-a0bcdf1e938323b124355ecb6e0d0b5bcda881c0d24cd3f4276b583828401fe3</originalsourceid><addsrcrecordid>eNpNUE1Lw0AUXETB0hb8CTl40EPa995uks2xBDVCoB56dtlsNm2kacpuqoj6302tiKcZ5uswjF0hzERMqZybdpZKQWdsRJzHIQ7a-T9-yabevwAApgQCxYjN867t1nZnu4MP_GFvne9ds1v74K3pN4GzvdOmD66zp-cP_BRfE3ZR6623018cs9X93SrLw2L58JgtitBgghRqKE1Vo0255MRLJMGjyJoytlBBGQ2mlhINVCRMxWtBSVxGkkuSArC2fMxuT7MbvVV717TavatONypfFOqoAU8oHhqvNGRvTlnjOu-drf8KCOrnFmVadbyFfwPhD1Md</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Homogeneous superstrings with retract $CP^{1|4}</title><source>Alma/SFX Local Collection</source><creator>Bashkin, Mikhail</creator><creatorcontrib>Bashkin, Mikhail</creatorcontrib><description>Any complex-analytic supermanifold whose retract is diffeomorphic to the complex projective superline (superstring) $CP^{1|4}$ is, up to a diffeomorphism, either a member of a 1-parameter family or one of 9 exceptional supermanifolds. I singled out the homogeneous of these supermanifolds and described Lie superalgebras of vector fields on them.</description><identifier>ISSN: 2336-1298</identifier><identifier>ISSN: 1804-1388</identifier><identifier>EISSN: 2336-1298</identifier><identifier>DOI: 10.46298/cm.9842</identifier><language>eng</language><publisher>University of Ostrava</publisher><subject>Mathematics</subject><ispartof>Communications in Mathematics, 2023-01, Vol.30 (2022), Issue 3...</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03726583$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bashkin, Mikhail</creatorcontrib><title>Homogeneous superstrings with retract $CP^{1|4}</title><title>Communications in Mathematics</title><description>Any complex-analytic supermanifold whose retract is diffeomorphic to the complex projective superline (superstring) $CP^{1|4}$ is, up to a diffeomorphism, either a member of a 1-parameter family or one of 9 exceptional supermanifolds. I singled out the homogeneous of these supermanifolds and described Lie superalgebras of vector fields on them.</description><subject>Mathematics</subject><issn>2336-1298</issn><issn>1804-1388</issn><issn>2336-1298</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNUE1Lw0AUXETB0hb8CTl40EPa995uks2xBDVCoB56dtlsNm2kacpuqoj6302tiKcZ5uswjF0hzERMqZybdpZKQWdsRJzHIQ7a-T9-yabevwAApgQCxYjN867t1nZnu4MP_GFvne9ds1v74K3pN4GzvdOmD66zp-cP_BRfE3ZR6623018cs9X93SrLw2L58JgtitBgghRqKE1Vo0255MRLJMGjyJoytlBBGQ2mlhINVCRMxWtBSVxGkkuSArC2fMxuT7MbvVV717TavatONypfFOqoAU8oHhqvNGRvTlnjOu-drf8KCOrnFmVadbyFfwPhD1Md</recordid><startdate>20230116</startdate><enddate>20230116</enddate><creator>Bashkin, Mikhail</creator><general>University of Ostrava</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20230116</creationdate><title>Homogeneous superstrings with retract $CP^{1|4}</title><author>Bashkin, Mikhail</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1712-a0bcdf1e938323b124355ecb6e0d0b5bcda881c0d24cd3f4276b583828401fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bashkin, Mikhail</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Communications in Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bashkin, Mikhail</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Homogeneous superstrings with retract $CP^{1|4}</atitle><jtitle>Communications in Mathematics</jtitle><date>2023-01-16</date><risdate>2023</risdate><volume>30 (2022), Issue 3...</volume><issn>2336-1298</issn><issn>1804-1388</issn><eissn>2336-1298</eissn><abstract>Any complex-analytic supermanifold whose retract is diffeomorphic to the complex projective superline (superstring) $CP^{1|4}$ is, up to a diffeomorphism, either a member of a 1-parameter family or one of 9 exceptional supermanifolds. I singled out the homogeneous of these supermanifolds and described Lie superalgebras of vector fields on them.</abstract><pub>University of Ostrava</pub><doi>10.46298/cm.9842</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2336-1298
ispartof Communications in Mathematics, 2023-01, Vol.30 (2022), Issue 3...
issn 2336-1298
1804-1388
2336-1298
language eng
recordid cdi_hal_primary_oai_HAL_hal_03726583v2
source Alma/SFX Local Collection
subjects Mathematics
title Homogeneous superstrings with retract $CP^{1|4}
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T01%3A24%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Homogeneous%20superstrings%20with%20retract%20$CP%5E%7B1%7C4%7D&rft.jtitle=Communications%20in%20Mathematics&rft.au=Bashkin,%20Mikhail&rft.date=2023-01-16&rft.volume=30%20(2022),%20Issue%203...&rft.issn=2336-1298&rft.eissn=2336-1298&rft_id=info:doi/10.46298/cm.9842&rft_dat=%3Chal_cross%3Eoai_HAL_hal_03726583v2%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true