An optimal feedback control that minimizes the epidemic peak in the SIR model under a budget constraint

We give the explicit solution of the optimal control problem which consists in minimizing the epidemic peak in the SIR model when the control is an attenuation factor of the infectious rate, subject to a L1 constraint on the control which represents a budget constraint. The optimal strategy is given...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Automatica (Oxford) 2022-12, Vol.146, p.110596, Article 110596
Hauptverfasser: Molina, Emilio, Rapaport, Alain
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 110596
container_title Automatica (Oxford)
container_volume 146
creator Molina, Emilio
Rapaport, Alain
description We give the explicit solution of the optimal control problem which consists in minimizing the epidemic peak in the SIR model when the control is an attenuation factor of the infectious rate, subject to a L1 constraint on the control which represents a budget constraint. The optimal strategy is given as a feedback control which consists in a singular arc maintaining the infected population at a constant level until the immunity threshold is reached, and no intervention outside the singular arc. We discuss and compare this strategy with the one that minimizes the peak when fixing the duration of a single intervention, as already proposed in the literature. Numerical simulations illustrate the benefits of the proposed control.
doi_str_mv 10.1016/j.automatica.2022.110596
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03715347v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0005109822004587</els_id><sourcerecordid>oai_HAL_hal_03715347v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-d2889b5bc55b53e5298dbdbee1e5b04c83f5611b4204453cbc89959e8f02e0443</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWKv_IVsXU5PMZJpZ1qK2UBB8rEMed9q08yJJC_rrnXFEl64u53DOgfshhCmZUULzu_1MHWNbq-iMmjHC2IxSwov8DE2omKcJE2l-jiaEEJ5QUohLdBXCvpcZFWyCtosGt110tapwCWC1Mgds2ib6tsJxpyKuXeNq9wmhl4ChcxZqZ3AH6oBd822-rl9w3Vqo8LGx4LHC-mi3EIehEL1yTbxGF6WqAtz83Cl6f3x4W66SzfPTernYJCYjLCaWCVForg3nmqfAWSGsthqAAtckMyIteU6pzhjJMp4abURR8AJESRj0VjpFt-PuTlWy8_1f_kO2ysnVYiMHj6RzytNsfqJ9VoxZ49sQPJS_BUrkAFfu5R9cOcCVI9y-ej9Wof_l5MDLYBw0BqzzYKK0rft_5AuXbogD</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An optimal feedback control that minimizes the epidemic peak in the SIR model under a budget constraint</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Molina, Emilio ; Rapaport, Alain</creator><creatorcontrib>Molina, Emilio ; Rapaport, Alain</creatorcontrib><description>We give the explicit solution of the optimal control problem which consists in minimizing the epidemic peak in the SIR model when the control is an attenuation factor of the infectious rate, subject to a L1 constraint on the control which represents a budget constraint. The optimal strategy is given as a feedback control which consists in a singular arc maintaining the infected population at a constant level until the immunity threshold is reached, and no intervention outside the singular arc. We discuss and compare this strategy with the one that minimizes the peak when fixing the duration of a single intervention, as already proposed in the literature. Numerical simulations illustrate the benefits of the proposed control.</description><identifier>ISSN: 0005-1098</identifier><identifier>EISSN: 1873-2836</identifier><identifier>DOI: 10.1016/j.automatica.2022.110596</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Epidemiology ; Feedback control ; Life Sciences ; Mathematics ; Maximum cost ; Optimal control ; Optimization and Control ; Santé publique et épidémiologie ; SIR model</subject><ispartof>Automatica (Oxford), 2022-12, Vol.146, p.110596, Article 110596</ispartof><rights>2022 Elsevier Ltd</rights><rights>Attribution - NonCommercial - NoDerivatives</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-d2889b5bc55b53e5298dbdbee1e5b04c83f5611b4204453cbc89959e8f02e0443</citedby><cites>FETCH-LOGICAL-c402t-d2889b5bc55b53e5298dbdbee1e5b04c83f5611b4204453cbc89959e8f02e0443</cites><orcidid>0000-0002-8515-0838</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0005109822004587$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://hal.inrae.fr/hal-03715347$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Molina, Emilio</creatorcontrib><creatorcontrib>Rapaport, Alain</creatorcontrib><title>An optimal feedback control that minimizes the epidemic peak in the SIR model under a budget constraint</title><title>Automatica (Oxford)</title><description>We give the explicit solution of the optimal control problem which consists in minimizing the epidemic peak in the SIR model when the control is an attenuation factor of the infectious rate, subject to a L1 constraint on the control which represents a budget constraint. The optimal strategy is given as a feedback control which consists in a singular arc maintaining the infected population at a constant level until the immunity threshold is reached, and no intervention outside the singular arc. We discuss and compare this strategy with the one that minimizes the peak when fixing the duration of a single intervention, as already proposed in the literature. Numerical simulations illustrate the benefits of the proposed control.</description><subject>Epidemiology</subject><subject>Feedback control</subject><subject>Life Sciences</subject><subject>Mathematics</subject><subject>Maximum cost</subject><subject>Optimal control</subject><subject>Optimization and Control</subject><subject>Santé publique et épidémiologie</subject><subject>SIR model</subject><issn>0005-1098</issn><issn>1873-2836</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEUhYMoWKv_IVsXU5PMZJpZ1qK2UBB8rEMed9q08yJJC_rrnXFEl64u53DOgfshhCmZUULzu_1MHWNbq-iMmjHC2IxSwov8DE2omKcJE2l-jiaEEJ5QUohLdBXCvpcZFWyCtosGt110tapwCWC1Mgds2ib6tsJxpyKuXeNq9wmhl4ChcxZqZ3AH6oBd822-rl9w3Vqo8LGx4LHC-mi3EIehEL1yTbxGF6WqAtz83Cl6f3x4W66SzfPTernYJCYjLCaWCVForg3nmqfAWSGsthqAAtckMyIteU6pzhjJMp4abURR8AJESRj0VjpFt-PuTlWy8_1f_kO2ysnVYiMHj6RzytNsfqJ9VoxZ49sQPJS_BUrkAFfu5R9cOcCVI9y-ej9Wof_l5MDLYBw0BqzzYKK0rft_5AuXbogD</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Molina, Emilio</creator><creator>Rapaport, Alain</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-8515-0838</orcidid></search><sort><creationdate>20221201</creationdate><title>An optimal feedback control that minimizes the epidemic peak in the SIR model under a budget constraint</title><author>Molina, Emilio ; Rapaport, Alain</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-d2889b5bc55b53e5298dbdbee1e5b04c83f5611b4204453cbc89959e8f02e0443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Epidemiology</topic><topic>Feedback control</topic><topic>Life Sciences</topic><topic>Mathematics</topic><topic>Maximum cost</topic><topic>Optimal control</topic><topic>Optimization and Control</topic><topic>Santé publique et épidémiologie</topic><topic>SIR model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Molina, Emilio</creatorcontrib><creatorcontrib>Rapaport, Alain</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Automatica (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Molina, Emilio</au><au>Rapaport, Alain</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An optimal feedback control that minimizes the epidemic peak in the SIR model under a budget constraint</atitle><jtitle>Automatica (Oxford)</jtitle><date>2022-12-01</date><risdate>2022</risdate><volume>146</volume><spage>110596</spage><pages>110596-</pages><artnum>110596</artnum><issn>0005-1098</issn><eissn>1873-2836</eissn><abstract>We give the explicit solution of the optimal control problem which consists in minimizing the epidemic peak in the SIR model when the control is an attenuation factor of the infectious rate, subject to a L1 constraint on the control which represents a budget constraint. The optimal strategy is given as a feedback control which consists in a singular arc maintaining the infected population at a constant level until the immunity threshold is reached, and no intervention outside the singular arc. We discuss and compare this strategy with the one that minimizes the peak when fixing the duration of a single intervention, as already proposed in the literature. Numerical simulations illustrate the benefits of the proposed control.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.automatica.2022.110596</doi><orcidid>https://orcid.org/0000-0002-8515-0838</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0005-1098
ispartof Automatica (Oxford), 2022-12, Vol.146, p.110596, Article 110596
issn 0005-1098
1873-2836
language eng
recordid cdi_hal_primary_oai_HAL_hal_03715347v1
source Elsevier ScienceDirect Journals Complete
subjects Epidemiology
Feedback control
Life Sciences
Mathematics
Maximum cost
Optimal control
Optimization and Control
Santé publique et épidémiologie
SIR model
title An optimal feedback control that minimizes the epidemic peak in the SIR model under a budget constraint
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T20%3A40%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20optimal%20feedback%20control%20that%20minimizes%20the%20epidemic%20peak%20in%20the%20SIR%20model%20under%20a%20budget%20constraint&rft.jtitle=Automatica%20(Oxford)&rft.au=Molina,%20Emilio&rft.date=2022-12-01&rft.volume=146&rft.spage=110596&rft.pages=110596-&rft.artnum=110596&rft.issn=0005-1098&rft.eissn=1873-2836&rft_id=info:doi/10.1016/j.automatica.2022.110596&rft_dat=%3Chal_cross%3Eoai_HAL_hal_03715347v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0005109822004587&rfr_iscdi=true