An optimal feedback control that minimizes the epidemic peak in the SIR model under a budget constraint
We give the explicit solution of the optimal control problem which consists in minimizing the epidemic peak in the SIR model when the control is an attenuation factor of the infectious rate, subject to a L1 constraint on the control which represents a budget constraint. The optimal strategy is given...
Gespeichert in:
Veröffentlicht in: | Automatica (Oxford) 2022-12, Vol.146, p.110596, Article 110596 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 110596 |
container_title | Automatica (Oxford) |
container_volume | 146 |
creator | Molina, Emilio Rapaport, Alain |
description | We give the explicit solution of the optimal control problem which consists in minimizing the epidemic peak in the SIR model when the control is an attenuation factor of the infectious rate, subject to a L1 constraint on the control which represents a budget constraint. The optimal strategy is given as a feedback control which consists in a singular arc maintaining the infected population at a constant level until the immunity threshold is reached, and no intervention outside the singular arc. We discuss and compare this strategy with the one that minimizes the peak when fixing the duration of a single intervention, as already proposed in the literature. Numerical simulations illustrate the benefits of the proposed control. |
doi_str_mv | 10.1016/j.automatica.2022.110596 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03715347v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0005109822004587</els_id><sourcerecordid>oai_HAL_hal_03715347v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-d2889b5bc55b53e5298dbdbee1e5b04c83f5611b4204453cbc89959e8f02e0443</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWKv_IVsXU5PMZJpZ1qK2UBB8rEMed9q08yJJC_rrnXFEl64u53DOgfshhCmZUULzu_1MHWNbq-iMmjHC2IxSwov8DE2omKcJE2l-jiaEEJ5QUohLdBXCvpcZFWyCtosGt110tapwCWC1Mgds2ib6tsJxpyKuXeNq9wmhl4ChcxZqZ3AH6oBd822-rl9w3Vqo8LGx4LHC-mi3EIehEL1yTbxGF6WqAtz83Cl6f3x4W66SzfPTernYJCYjLCaWCVForg3nmqfAWSGsthqAAtckMyIteU6pzhjJMp4abURR8AJESRj0VjpFt-PuTlWy8_1f_kO2ysnVYiMHj6RzytNsfqJ9VoxZ49sQPJS_BUrkAFfu5R9cOcCVI9y-ej9Wof_l5MDLYBw0BqzzYKK0rft_5AuXbogD</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An optimal feedback control that minimizes the epidemic peak in the SIR model under a budget constraint</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Molina, Emilio ; Rapaport, Alain</creator><creatorcontrib>Molina, Emilio ; Rapaport, Alain</creatorcontrib><description>We give the explicit solution of the optimal control problem which consists in minimizing the epidemic peak in the SIR model when the control is an attenuation factor of the infectious rate, subject to a L1 constraint on the control which represents a budget constraint. The optimal strategy is given as a feedback control which consists in a singular arc maintaining the infected population at a constant level until the immunity threshold is reached, and no intervention outside the singular arc. We discuss and compare this strategy with the one that minimizes the peak when fixing the duration of a single intervention, as already proposed in the literature. Numerical simulations illustrate the benefits of the proposed control.</description><identifier>ISSN: 0005-1098</identifier><identifier>EISSN: 1873-2836</identifier><identifier>DOI: 10.1016/j.automatica.2022.110596</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Epidemiology ; Feedback control ; Life Sciences ; Mathematics ; Maximum cost ; Optimal control ; Optimization and Control ; Santé publique et épidémiologie ; SIR model</subject><ispartof>Automatica (Oxford), 2022-12, Vol.146, p.110596, Article 110596</ispartof><rights>2022 Elsevier Ltd</rights><rights>Attribution - NonCommercial - NoDerivatives</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-d2889b5bc55b53e5298dbdbee1e5b04c83f5611b4204453cbc89959e8f02e0443</citedby><cites>FETCH-LOGICAL-c402t-d2889b5bc55b53e5298dbdbee1e5b04c83f5611b4204453cbc89959e8f02e0443</cites><orcidid>0000-0002-8515-0838</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0005109822004587$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://hal.inrae.fr/hal-03715347$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Molina, Emilio</creatorcontrib><creatorcontrib>Rapaport, Alain</creatorcontrib><title>An optimal feedback control that minimizes the epidemic peak in the SIR model under a budget constraint</title><title>Automatica (Oxford)</title><description>We give the explicit solution of the optimal control problem which consists in minimizing the epidemic peak in the SIR model when the control is an attenuation factor of the infectious rate, subject to a L1 constraint on the control which represents a budget constraint. The optimal strategy is given as a feedback control which consists in a singular arc maintaining the infected population at a constant level until the immunity threshold is reached, and no intervention outside the singular arc. We discuss and compare this strategy with the one that minimizes the peak when fixing the duration of a single intervention, as already proposed in the literature. Numerical simulations illustrate the benefits of the proposed control.</description><subject>Epidemiology</subject><subject>Feedback control</subject><subject>Life Sciences</subject><subject>Mathematics</subject><subject>Maximum cost</subject><subject>Optimal control</subject><subject>Optimization and Control</subject><subject>Santé publique et épidémiologie</subject><subject>SIR model</subject><issn>0005-1098</issn><issn>1873-2836</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEUhYMoWKv_IVsXU5PMZJpZ1qK2UBB8rEMed9q08yJJC_rrnXFEl64u53DOgfshhCmZUULzu_1MHWNbq-iMmjHC2IxSwov8DE2omKcJE2l-jiaEEJ5QUohLdBXCvpcZFWyCtosGt110tapwCWC1Mgds2ib6tsJxpyKuXeNq9wmhl4ChcxZqZ3AH6oBd822-rl9w3Vqo8LGx4LHC-mi3EIehEL1yTbxGF6WqAtz83Cl6f3x4W66SzfPTernYJCYjLCaWCVForg3nmqfAWSGsthqAAtckMyIteU6pzhjJMp4abURR8AJESRj0VjpFt-PuTlWy8_1f_kO2ysnVYiMHj6RzytNsfqJ9VoxZ49sQPJS_BUrkAFfu5R9cOcCVI9y-ej9Wof_l5MDLYBw0BqzzYKK0rft_5AuXbogD</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Molina, Emilio</creator><creator>Rapaport, Alain</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-8515-0838</orcidid></search><sort><creationdate>20221201</creationdate><title>An optimal feedback control that minimizes the epidemic peak in the SIR model under a budget constraint</title><author>Molina, Emilio ; Rapaport, Alain</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-d2889b5bc55b53e5298dbdbee1e5b04c83f5611b4204453cbc89959e8f02e0443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Epidemiology</topic><topic>Feedback control</topic><topic>Life Sciences</topic><topic>Mathematics</topic><topic>Maximum cost</topic><topic>Optimal control</topic><topic>Optimization and Control</topic><topic>Santé publique et épidémiologie</topic><topic>SIR model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Molina, Emilio</creatorcontrib><creatorcontrib>Rapaport, Alain</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Automatica (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Molina, Emilio</au><au>Rapaport, Alain</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An optimal feedback control that minimizes the epidemic peak in the SIR model under a budget constraint</atitle><jtitle>Automatica (Oxford)</jtitle><date>2022-12-01</date><risdate>2022</risdate><volume>146</volume><spage>110596</spage><pages>110596-</pages><artnum>110596</artnum><issn>0005-1098</issn><eissn>1873-2836</eissn><abstract>We give the explicit solution of the optimal control problem which consists in minimizing the epidemic peak in the SIR model when the control is an attenuation factor of the infectious rate, subject to a L1 constraint on the control which represents a budget constraint. The optimal strategy is given as a feedback control which consists in a singular arc maintaining the infected population at a constant level until the immunity threshold is reached, and no intervention outside the singular arc. We discuss and compare this strategy with the one that minimizes the peak when fixing the duration of a single intervention, as already proposed in the literature. Numerical simulations illustrate the benefits of the proposed control.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.automatica.2022.110596</doi><orcidid>https://orcid.org/0000-0002-8515-0838</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0005-1098 |
ispartof | Automatica (Oxford), 2022-12, Vol.146, p.110596, Article 110596 |
issn | 0005-1098 1873-2836 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03715347v1 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Epidemiology Feedback control Life Sciences Mathematics Maximum cost Optimal control Optimization and Control Santé publique et épidémiologie SIR model |
title | An optimal feedback control that minimizes the epidemic peak in the SIR model under a budget constraint |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T20%3A40%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20optimal%20feedback%20control%20that%20minimizes%20the%20epidemic%20peak%20in%20the%20SIR%20model%20under%20a%20budget%20constraint&rft.jtitle=Automatica%20(Oxford)&rft.au=Molina,%20Emilio&rft.date=2022-12-01&rft.volume=146&rft.spage=110596&rft.pages=110596-&rft.artnum=110596&rft.issn=0005-1098&rft.eissn=1873-2836&rft_id=info:doi/10.1016/j.automatica.2022.110596&rft_dat=%3Chal_cross%3Eoai_HAL_hal_03715347v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0005109822004587&rfr_iscdi=true |