Physicochemical and electrochemical characterization of Nafion-type membranes with embedded silica nanoparticles: Effect of functionalization
Introduction of nanoparticles in membranes allows a significant enhancement of their performance in energy production, water treatment and other applications. However, the effect of nanoparticles’ surface functionalization and the mechanism of their impact on membrane properties remain poorly studie...
Gespeichert in:
Veröffentlicht in: | Electrochimica acta 2021-02, Vol.370, p.137689, Article 137689 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 137689 |
container_title | Electrochimica acta |
container_volume | 370 |
creator | Porozhnyy, M.V. Shkirskaya, S.A. Butylskii, D.Yu Dotsenko, V.V. Safronova, E.Yu Yaroslavtsev, A.B. Deabate, S. Huguet, P. Nikonenko, V.V. |
description | Introduction of nanoparticles in membranes allows a significant enhancement of their performance in energy production, water treatment and other applications. However, the effect of nanoparticles’ surface functionalization and the mechanism of their impact on membrane properties remain poorly studied. In this paper, we examine a Nafion-based membrane and its modifications, each containing 3 wt% SiO2. The effect of functionalization by propyl, 3-aminopropyl and 3,3,3-trifluoropropyl is investigated. The water uptake, contact angle, conductivity, diffusion permeability to NaCl, current-voltage curves (CVC), chronopotentiograms (ChP), and the difference between the pH of the desalination compartment output and input solutions (characterizing the water splitting rate) are reported. It is found that the doping of the membranes with nanoparticles leads to increasing their conductivity in all cases except 3-aminopropyl, which imparts a positive charge to the nanoparticles; the diffusion permeability decreases and permselectivity increases in all cases. The latter is explained by transformation of the mesoporous membrane structure to the microporous one. The impact of nanoparticles on the membrane conductivity, CVC and ChP is mainly caused by an additional (positive) space charge introduced into the pore solution and at the membrane surface by the electric double layer surrounding the nanoparticles. The greater the surface charge density of the nanoparticles and the smaller their size, the stronger the impact. Accordingly, the highest conductivity, current density at a low fixed voltage and chronopotentiometric transition time are shown by the sample doped with SiO2 and 3,3,3-trifluoropropyl. The interplay between electroconvection and water splitting phenomena is discussed. |
doi_str_mv | 10.1016/j.electacta.2020.137689 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03709668v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S001346862032082X</els_id><sourcerecordid>2505725532</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-d9b67dfd8101370596e2b4cf22338d8430386a176968e731c1b556aab256e56e3</originalsourceid><addsrcrecordid>eNqFkV1rFDEYhYMouFZ_gwGvvJg1H5uP8W4ptRUW9aK9DpnkDZNldrIms5Xtf_A_m-mUell4IcnhnIckB6GPlKwpofLLfg0DuMnWWTPCqsqV1O0rtKJa8YZr0b5GK0IobzZSy7foXSl7QoiSiqzQ31_9uUSXXA-H6OyA7ejxIzD_11xvc-VDjg92imnEKeAfNtRdM52PgA9w6LIdoeA_cepxPYH34HGJQ83j0Y7paPMU3QDlK74KoeJnRjiNbubZ4Qn8Hr0Jdijw4Wm9QHffrm4vb5rdz-vvl9td4zZMTo1vO6l88Lp-AFdEtBJYt3GBMc611xtOuJaWKtlKDYpTRzshpLUdExLq8Av0eeH2djDHHA82n02y0dxsd2bWSMW2Uup7Wr2fFu8xp98nKJPZp1Oudy6GCSIUE4Kz6lKLy-VUSobwjKXEzD2ZvXnuycw9maWnmtwuSagPvo-QTXERRgc-5uo3PsUXGf8AHhKh7A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2505725532</pqid></control><display><type>article</type><title>Physicochemical and electrochemical characterization of Nafion-type membranes with embedded silica nanoparticles: Effect of functionalization</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Porozhnyy, M.V. ; Shkirskaya, S.A. ; Butylskii, D.Yu ; Dotsenko, V.V. ; Safronova, E.Yu ; Yaroslavtsev, A.B. ; Deabate, S. ; Huguet, P. ; Nikonenko, V.V.</creator><creatorcontrib>Porozhnyy, M.V. ; Shkirskaya, S.A. ; Butylskii, D.Yu ; Dotsenko, V.V. ; Safronova, E.Yu ; Yaroslavtsev, A.B. ; Deabate, S. ; Huguet, P. ; Nikonenko, V.V.</creatorcontrib><description>Introduction of nanoparticles in membranes allows a significant enhancement of their performance in energy production, water treatment and other applications. However, the effect of nanoparticles’ surface functionalization and the mechanism of their impact on membrane properties remain poorly studied. In this paper, we examine a Nafion-based membrane and its modifications, each containing 3 wt% SiO2. The effect of functionalization by propyl, 3-aminopropyl and 3,3,3-trifluoropropyl is investigated. The water uptake, contact angle, conductivity, diffusion permeability to NaCl, current-voltage curves (CVC), chronopotentiograms (ChP), and the difference between the pH of the desalination compartment output and input solutions (characterizing the water splitting rate) are reported. It is found that the doping of the membranes with nanoparticles leads to increasing their conductivity in all cases except 3-aminopropyl, which imparts a positive charge to the nanoparticles; the diffusion permeability decreases and permselectivity increases in all cases. The latter is explained by transformation of the mesoporous membrane structure to the microporous one. The impact of nanoparticles on the membrane conductivity, CVC and ChP is mainly caused by an additional (positive) space charge introduced into the pore solution and at the membrane surface by the electric double layer surrounding the nanoparticles. The greater the surface charge density of the nanoparticles and the smaller their size, the stronger the impact. Accordingly, the highest conductivity, current density at a low fixed voltage and chronopotentiometric transition time are shown by the sample doped with SiO2 and 3,3,3-trifluoropropyl. The interplay between electroconvection and water splitting phenomena is discussed.</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2020.137689</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Charge density ; Chemical Sciences ; Contact angle ; Desalination ; Electric contacts ; Electric double layer ; Electric potential ; Electrochemical analysis ; Electrochemical properties ; Ion-exchange membrane ; Material chemistry ; Membrane structures ; Membranes ; Microheterogeneous ; Nanoparticles ; Permeability ; Silica nanoparticles ; Silicon dioxide ; Space charge ; Surface charge ; Voltage ; Water splitting ; Water treatment</subject><ispartof>Electrochimica acta, 2021-02, Vol.370, p.137689, Article 137689</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Feb 20, 2021</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-d9b67dfd8101370596e2b4cf22338d8430386a176968e731c1b556aab256e56e3</citedby><cites>FETCH-LOGICAL-c426t-d9b67dfd8101370596e2b4cf22338d8430386a176968e731c1b556aab256e56e3</cites><orcidid>0000-0003-0003-0288 ; 0000-0001-7163-0497 ; 0000-0001-6344-298X ; 0000-0001-8195-7223 ; 0000-0001-8446-6198 ; 0000-0002-9881-7494</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.electacta.2020.137689$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,778,782,883,3539,27911,27912,45982</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03709668$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Porozhnyy, M.V.</creatorcontrib><creatorcontrib>Shkirskaya, S.A.</creatorcontrib><creatorcontrib>Butylskii, D.Yu</creatorcontrib><creatorcontrib>Dotsenko, V.V.</creatorcontrib><creatorcontrib>Safronova, E.Yu</creatorcontrib><creatorcontrib>Yaroslavtsev, A.B.</creatorcontrib><creatorcontrib>Deabate, S.</creatorcontrib><creatorcontrib>Huguet, P.</creatorcontrib><creatorcontrib>Nikonenko, V.V.</creatorcontrib><title>Physicochemical and electrochemical characterization of Nafion-type membranes with embedded silica nanoparticles: Effect of functionalization</title><title>Electrochimica acta</title><description>Introduction of nanoparticles in membranes allows a significant enhancement of their performance in energy production, water treatment and other applications. However, the effect of nanoparticles’ surface functionalization and the mechanism of their impact on membrane properties remain poorly studied. In this paper, we examine a Nafion-based membrane and its modifications, each containing 3 wt% SiO2. The effect of functionalization by propyl, 3-aminopropyl and 3,3,3-trifluoropropyl is investigated. The water uptake, contact angle, conductivity, diffusion permeability to NaCl, current-voltage curves (CVC), chronopotentiograms (ChP), and the difference between the pH of the desalination compartment output and input solutions (characterizing the water splitting rate) are reported. It is found that the doping of the membranes with nanoparticles leads to increasing their conductivity in all cases except 3-aminopropyl, which imparts a positive charge to the nanoparticles; the diffusion permeability decreases and permselectivity increases in all cases. The latter is explained by transformation of the mesoporous membrane structure to the microporous one. The impact of nanoparticles on the membrane conductivity, CVC and ChP is mainly caused by an additional (positive) space charge introduced into the pore solution and at the membrane surface by the electric double layer surrounding the nanoparticles. The greater the surface charge density of the nanoparticles and the smaller their size, the stronger the impact. Accordingly, the highest conductivity, current density at a low fixed voltage and chronopotentiometric transition time are shown by the sample doped with SiO2 and 3,3,3-trifluoropropyl. The interplay between electroconvection and water splitting phenomena is discussed.</description><subject>Charge density</subject><subject>Chemical Sciences</subject><subject>Contact angle</subject><subject>Desalination</subject><subject>Electric contacts</subject><subject>Electric double layer</subject><subject>Electric potential</subject><subject>Electrochemical analysis</subject><subject>Electrochemical properties</subject><subject>Ion-exchange membrane</subject><subject>Material chemistry</subject><subject>Membrane structures</subject><subject>Membranes</subject><subject>Microheterogeneous</subject><subject>Nanoparticles</subject><subject>Permeability</subject><subject>Silica nanoparticles</subject><subject>Silicon dioxide</subject><subject>Space charge</subject><subject>Surface charge</subject><subject>Voltage</subject><subject>Water splitting</subject><subject>Water treatment</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkV1rFDEYhYMouFZ_gwGvvJg1H5uP8W4ptRUW9aK9DpnkDZNldrIms5Xtf_A_m-mUell4IcnhnIckB6GPlKwpofLLfg0DuMnWWTPCqsqV1O0rtKJa8YZr0b5GK0IobzZSy7foXSl7QoiSiqzQ31_9uUSXXA-H6OyA7ejxIzD_11xvc-VDjg92imnEKeAfNtRdM52PgA9w6LIdoeA_cepxPYH34HGJQ83j0Y7paPMU3QDlK74KoeJnRjiNbubZ4Qn8Hr0Jdijw4Wm9QHffrm4vb5rdz-vvl9td4zZMTo1vO6l88Lp-AFdEtBJYt3GBMc611xtOuJaWKtlKDYpTRzshpLUdExLq8Av0eeH2djDHHA82n02y0dxsd2bWSMW2Uup7Wr2fFu8xp98nKJPZp1Oudy6GCSIUE4Kz6lKLy-VUSobwjKXEzD2ZvXnuycw9maWnmtwuSagPvo-QTXERRgc-5uo3PsUXGf8AHhKh7A</recordid><startdate>20210220</startdate><enddate>20210220</enddate><creator>Porozhnyy, M.V.</creator><creator>Shkirskaya, S.A.</creator><creator>Butylskii, D.Yu</creator><creator>Dotsenko, V.V.</creator><creator>Safronova, E.Yu</creator><creator>Yaroslavtsev, A.B.</creator><creator>Deabate, S.</creator><creator>Huguet, P.</creator><creator>Nikonenko, V.V.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-0003-0288</orcidid><orcidid>https://orcid.org/0000-0001-7163-0497</orcidid><orcidid>https://orcid.org/0000-0001-6344-298X</orcidid><orcidid>https://orcid.org/0000-0001-8195-7223</orcidid><orcidid>https://orcid.org/0000-0001-8446-6198</orcidid><orcidid>https://orcid.org/0000-0002-9881-7494</orcidid></search><sort><creationdate>20210220</creationdate><title>Physicochemical and electrochemical characterization of Nafion-type membranes with embedded silica nanoparticles: Effect of functionalization</title><author>Porozhnyy, M.V. ; Shkirskaya, S.A. ; Butylskii, D.Yu ; Dotsenko, V.V. ; Safronova, E.Yu ; Yaroslavtsev, A.B. ; Deabate, S. ; Huguet, P. ; Nikonenko, V.V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-d9b67dfd8101370596e2b4cf22338d8430386a176968e731c1b556aab256e56e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Charge density</topic><topic>Chemical Sciences</topic><topic>Contact angle</topic><topic>Desalination</topic><topic>Electric contacts</topic><topic>Electric double layer</topic><topic>Electric potential</topic><topic>Electrochemical analysis</topic><topic>Electrochemical properties</topic><topic>Ion-exchange membrane</topic><topic>Material chemistry</topic><topic>Membrane structures</topic><topic>Membranes</topic><topic>Microheterogeneous</topic><topic>Nanoparticles</topic><topic>Permeability</topic><topic>Silica nanoparticles</topic><topic>Silicon dioxide</topic><topic>Space charge</topic><topic>Surface charge</topic><topic>Voltage</topic><topic>Water splitting</topic><topic>Water treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Porozhnyy, M.V.</creatorcontrib><creatorcontrib>Shkirskaya, S.A.</creatorcontrib><creatorcontrib>Butylskii, D.Yu</creatorcontrib><creatorcontrib>Dotsenko, V.V.</creatorcontrib><creatorcontrib>Safronova, E.Yu</creatorcontrib><creatorcontrib>Yaroslavtsev, A.B.</creatorcontrib><creatorcontrib>Deabate, S.</creatorcontrib><creatorcontrib>Huguet, P.</creatorcontrib><creatorcontrib>Nikonenko, V.V.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Porozhnyy, M.V.</au><au>Shkirskaya, S.A.</au><au>Butylskii, D.Yu</au><au>Dotsenko, V.V.</au><au>Safronova, E.Yu</au><au>Yaroslavtsev, A.B.</au><au>Deabate, S.</au><au>Huguet, P.</au><au>Nikonenko, V.V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physicochemical and electrochemical characterization of Nafion-type membranes with embedded silica nanoparticles: Effect of functionalization</atitle><jtitle>Electrochimica acta</jtitle><date>2021-02-20</date><risdate>2021</risdate><volume>370</volume><spage>137689</spage><pages>137689-</pages><artnum>137689</artnum><issn>0013-4686</issn><eissn>1873-3859</eissn><abstract>Introduction of nanoparticles in membranes allows a significant enhancement of their performance in energy production, water treatment and other applications. However, the effect of nanoparticles’ surface functionalization and the mechanism of their impact on membrane properties remain poorly studied. In this paper, we examine a Nafion-based membrane and its modifications, each containing 3 wt% SiO2. The effect of functionalization by propyl, 3-aminopropyl and 3,3,3-trifluoropropyl is investigated. The water uptake, contact angle, conductivity, diffusion permeability to NaCl, current-voltage curves (CVC), chronopotentiograms (ChP), and the difference between the pH of the desalination compartment output and input solutions (characterizing the water splitting rate) are reported. It is found that the doping of the membranes with nanoparticles leads to increasing their conductivity in all cases except 3-aminopropyl, which imparts a positive charge to the nanoparticles; the diffusion permeability decreases and permselectivity increases in all cases. The latter is explained by transformation of the mesoporous membrane structure to the microporous one. The impact of nanoparticles on the membrane conductivity, CVC and ChP is mainly caused by an additional (positive) space charge introduced into the pore solution and at the membrane surface by the electric double layer surrounding the nanoparticles. The greater the surface charge density of the nanoparticles and the smaller their size, the stronger the impact. Accordingly, the highest conductivity, current density at a low fixed voltage and chronopotentiometric transition time are shown by the sample doped with SiO2 and 3,3,3-trifluoropropyl. The interplay between electroconvection and water splitting phenomena is discussed.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2020.137689</doi><orcidid>https://orcid.org/0000-0003-0003-0288</orcidid><orcidid>https://orcid.org/0000-0001-7163-0497</orcidid><orcidid>https://orcid.org/0000-0001-6344-298X</orcidid><orcidid>https://orcid.org/0000-0001-8195-7223</orcidid><orcidid>https://orcid.org/0000-0001-8446-6198</orcidid><orcidid>https://orcid.org/0000-0002-9881-7494</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-4686 |
ispartof | Electrochimica acta, 2021-02, Vol.370, p.137689, Article 137689 |
issn | 0013-4686 1873-3859 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03709668v1 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Charge density Chemical Sciences Contact angle Desalination Electric contacts Electric double layer Electric potential Electrochemical analysis Electrochemical properties Ion-exchange membrane Material chemistry Membrane structures Membranes Microheterogeneous Nanoparticles Permeability Silica nanoparticles Silicon dioxide Space charge Surface charge Voltage Water splitting Water treatment |
title | Physicochemical and electrochemical characterization of Nafion-type membranes with embedded silica nanoparticles: Effect of functionalization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T13%3A31%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physicochemical%20and%20electrochemical%20characterization%20of%20Nafion-type%20membranes%20with%20embedded%20silica%20nanoparticles:%20Effect%20of%20functionalization&rft.jtitle=Electrochimica%20acta&rft.au=Porozhnyy,%20M.V.&rft.date=2021-02-20&rft.volume=370&rft.spage=137689&rft.pages=137689-&rft.artnum=137689&rft.issn=0013-4686&rft.eissn=1873-3859&rft_id=info:doi/10.1016/j.electacta.2020.137689&rft_dat=%3Cproquest_hal_p%3E2505725532%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2505725532&rft_id=info:pmid/&rft_els_id=S001346862032082X&rfr_iscdi=true |