Physicochemical and electrochemical characterization of Nafion-type membranes with embedded silica nanoparticles: Effect of functionalization

Introduction of nanoparticles in membranes allows a significant enhancement of their performance in energy production, water treatment and other applications. However, the effect of nanoparticles’ surface functionalization and the mechanism of their impact on membrane properties remain poorly studie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrochimica acta 2021-02, Vol.370, p.137689, Article 137689
Hauptverfasser: Porozhnyy, M.V., Shkirskaya, S.A., Butylskii, D.Yu, Dotsenko, V.V., Safronova, E.Yu, Yaroslavtsev, A.B., Deabate, S., Huguet, P., Nikonenko, V.V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 137689
container_title Electrochimica acta
container_volume 370
creator Porozhnyy, M.V.
Shkirskaya, S.A.
Butylskii, D.Yu
Dotsenko, V.V.
Safronova, E.Yu
Yaroslavtsev, A.B.
Deabate, S.
Huguet, P.
Nikonenko, V.V.
description Introduction of nanoparticles in membranes allows a significant enhancement of their performance in energy production, water treatment and other applications. However, the effect of nanoparticles’ surface functionalization and the mechanism of their impact on membrane properties remain poorly studied. In this paper, we examine a Nafion-based membrane and its modifications, each containing 3 wt% SiO2. The effect of functionalization by propyl, 3-aminopropyl and 3,3,3-trifluoropropyl is investigated. The water uptake, contact angle, conductivity, diffusion permeability to NaCl, current-voltage curves (CVC), chronopotentiograms (ChP), and the difference between the pH of the desalination compartment output and input solutions (characterizing the water splitting rate) are reported. It is found that the doping of the membranes with nanoparticles leads to increasing their conductivity in all cases except 3-aminopropyl, which imparts a positive charge to the nanoparticles; the diffusion permeability decreases and permselectivity increases in all cases. The latter is explained by transformation of the mesoporous membrane structure to the microporous one. The impact of nanoparticles on the membrane conductivity, CVC and ChP is mainly caused by an additional (positive) space charge introduced into the pore solution and at the membrane surface by the electric double layer surrounding the nanoparticles. The greater the surface charge density of the nanoparticles and the smaller their size, the stronger the impact. Accordingly, the highest conductivity, current density at a low fixed voltage and chronopotentiometric transition time are shown by the sample doped with SiO2 and 3,3,3-trifluoropropyl. The interplay between electroconvection and water splitting phenomena is discussed.
doi_str_mv 10.1016/j.electacta.2020.137689
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03709668v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S001346862032082X</els_id><sourcerecordid>2505725532</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-d9b67dfd8101370596e2b4cf22338d8430386a176968e731c1b556aab256e56e3</originalsourceid><addsrcrecordid>eNqFkV1rFDEYhYMouFZ_gwGvvJg1H5uP8W4ptRUW9aK9DpnkDZNldrIms5Xtf_A_m-mUell4IcnhnIckB6GPlKwpofLLfg0DuMnWWTPCqsqV1O0rtKJa8YZr0b5GK0IobzZSy7foXSl7QoiSiqzQ31_9uUSXXA-H6OyA7ejxIzD_11xvc-VDjg92imnEKeAfNtRdM52PgA9w6LIdoeA_cepxPYH34HGJQ83j0Y7paPMU3QDlK74KoeJnRjiNbubZ4Qn8Hr0Jdijw4Wm9QHffrm4vb5rdz-vvl9td4zZMTo1vO6l88Lp-AFdEtBJYt3GBMc611xtOuJaWKtlKDYpTRzshpLUdExLq8Av0eeH2djDHHA82n02y0dxsd2bWSMW2Uup7Wr2fFu8xp98nKJPZp1Oudy6GCSIUE4Kz6lKLy-VUSobwjKXEzD2ZvXnuycw9maWnmtwuSagPvo-QTXERRgc-5uo3PsUXGf8AHhKh7A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2505725532</pqid></control><display><type>article</type><title>Physicochemical and electrochemical characterization of Nafion-type membranes with embedded silica nanoparticles: Effect of functionalization</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Porozhnyy, M.V. ; Shkirskaya, S.A. ; Butylskii, D.Yu ; Dotsenko, V.V. ; Safronova, E.Yu ; Yaroslavtsev, A.B. ; Deabate, S. ; Huguet, P. ; Nikonenko, V.V.</creator><creatorcontrib>Porozhnyy, M.V. ; Shkirskaya, S.A. ; Butylskii, D.Yu ; Dotsenko, V.V. ; Safronova, E.Yu ; Yaroslavtsev, A.B. ; Deabate, S. ; Huguet, P. ; Nikonenko, V.V.</creatorcontrib><description>Introduction of nanoparticles in membranes allows a significant enhancement of their performance in energy production, water treatment and other applications. However, the effect of nanoparticles’ surface functionalization and the mechanism of their impact on membrane properties remain poorly studied. In this paper, we examine a Nafion-based membrane and its modifications, each containing 3 wt% SiO2. The effect of functionalization by propyl, 3-aminopropyl and 3,3,3-trifluoropropyl is investigated. The water uptake, contact angle, conductivity, diffusion permeability to NaCl, current-voltage curves (CVC), chronopotentiograms (ChP), and the difference between the pH of the desalination compartment output and input solutions (characterizing the water splitting rate) are reported. It is found that the doping of the membranes with nanoparticles leads to increasing their conductivity in all cases except 3-aminopropyl, which imparts a positive charge to the nanoparticles; the diffusion permeability decreases and permselectivity increases in all cases. The latter is explained by transformation of the mesoporous membrane structure to the microporous one. The impact of nanoparticles on the membrane conductivity, CVC and ChP is mainly caused by an additional (positive) space charge introduced into the pore solution and at the membrane surface by the electric double layer surrounding the nanoparticles. The greater the surface charge density of the nanoparticles and the smaller their size, the stronger the impact. Accordingly, the highest conductivity, current density at a low fixed voltage and chronopotentiometric transition time are shown by the sample doped with SiO2 and 3,3,3-trifluoropropyl. The interplay between electroconvection and water splitting phenomena is discussed.</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2020.137689</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Charge density ; Chemical Sciences ; Contact angle ; Desalination ; Electric contacts ; Electric double layer ; Electric potential ; Electrochemical analysis ; Electrochemical properties ; Ion-exchange membrane ; Material chemistry ; Membrane structures ; Membranes ; Microheterogeneous ; Nanoparticles ; Permeability ; Silica nanoparticles ; Silicon dioxide ; Space charge ; Surface charge ; Voltage ; Water splitting ; Water treatment</subject><ispartof>Electrochimica acta, 2021-02, Vol.370, p.137689, Article 137689</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Feb 20, 2021</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-d9b67dfd8101370596e2b4cf22338d8430386a176968e731c1b556aab256e56e3</citedby><cites>FETCH-LOGICAL-c426t-d9b67dfd8101370596e2b4cf22338d8430386a176968e731c1b556aab256e56e3</cites><orcidid>0000-0003-0003-0288 ; 0000-0001-7163-0497 ; 0000-0001-6344-298X ; 0000-0001-8195-7223 ; 0000-0001-8446-6198 ; 0000-0002-9881-7494</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.electacta.2020.137689$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,778,782,883,3539,27911,27912,45982</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03709668$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Porozhnyy, M.V.</creatorcontrib><creatorcontrib>Shkirskaya, S.A.</creatorcontrib><creatorcontrib>Butylskii, D.Yu</creatorcontrib><creatorcontrib>Dotsenko, V.V.</creatorcontrib><creatorcontrib>Safronova, E.Yu</creatorcontrib><creatorcontrib>Yaroslavtsev, A.B.</creatorcontrib><creatorcontrib>Deabate, S.</creatorcontrib><creatorcontrib>Huguet, P.</creatorcontrib><creatorcontrib>Nikonenko, V.V.</creatorcontrib><title>Physicochemical and electrochemical characterization of Nafion-type membranes with embedded silica nanoparticles: Effect of functionalization</title><title>Electrochimica acta</title><description>Introduction of nanoparticles in membranes allows a significant enhancement of their performance in energy production, water treatment and other applications. However, the effect of nanoparticles’ surface functionalization and the mechanism of their impact on membrane properties remain poorly studied. In this paper, we examine a Nafion-based membrane and its modifications, each containing 3 wt% SiO2. The effect of functionalization by propyl, 3-aminopropyl and 3,3,3-trifluoropropyl is investigated. The water uptake, contact angle, conductivity, diffusion permeability to NaCl, current-voltage curves (CVC), chronopotentiograms (ChP), and the difference between the pH of the desalination compartment output and input solutions (characterizing the water splitting rate) are reported. It is found that the doping of the membranes with nanoparticles leads to increasing their conductivity in all cases except 3-aminopropyl, which imparts a positive charge to the nanoparticles; the diffusion permeability decreases and permselectivity increases in all cases. The latter is explained by transformation of the mesoporous membrane structure to the microporous one. The impact of nanoparticles on the membrane conductivity, CVC and ChP is mainly caused by an additional (positive) space charge introduced into the pore solution and at the membrane surface by the electric double layer surrounding the nanoparticles. The greater the surface charge density of the nanoparticles and the smaller their size, the stronger the impact. Accordingly, the highest conductivity, current density at a low fixed voltage and chronopotentiometric transition time are shown by the sample doped with SiO2 and 3,3,3-trifluoropropyl. The interplay between electroconvection and water splitting phenomena is discussed.</description><subject>Charge density</subject><subject>Chemical Sciences</subject><subject>Contact angle</subject><subject>Desalination</subject><subject>Electric contacts</subject><subject>Electric double layer</subject><subject>Electric potential</subject><subject>Electrochemical analysis</subject><subject>Electrochemical properties</subject><subject>Ion-exchange membrane</subject><subject>Material chemistry</subject><subject>Membrane structures</subject><subject>Membranes</subject><subject>Microheterogeneous</subject><subject>Nanoparticles</subject><subject>Permeability</subject><subject>Silica nanoparticles</subject><subject>Silicon dioxide</subject><subject>Space charge</subject><subject>Surface charge</subject><subject>Voltage</subject><subject>Water splitting</subject><subject>Water treatment</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkV1rFDEYhYMouFZ_gwGvvJg1H5uP8W4ptRUW9aK9DpnkDZNldrIms5Xtf_A_m-mUell4IcnhnIckB6GPlKwpofLLfg0DuMnWWTPCqsqV1O0rtKJa8YZr0b5GK0IobzZSy7foXSl7QoiSiqzQ31_9uUSXXA-H6OyA7ejxIzD_11xvc-VDjg92imnEKeAfNtRdM52PgA9w6LIdoeA_cepxPYH34HGJQ83j0Y7paPMU3QDlK74KoeJnRjiNbubZ4Qn8Hr0Jdijw4Wm9QHffrm4vb5rdz-vvl9td4zZMTo1vO6l88Lp-AFdEtBJYt3GBMc611xtOuJaWKtlKDYpTRzshpLUdExLq8Av0eeH2djDHHA82n02y0dxsd2bWSMW2Uup7Wr2fFu8xp98nKJPZp1Oudy6GCSIUE4Kz6lKLy-VUSobwjKXEzD2ZvXnuycw9maWnmtwuSagPvo-QTXERRgc-5uo3PsUXGf8AHhKh7A</recordid><startdate>20210220</startdate><enddate>20210220</enddate><creator>Porozhnyy, M.V.</creator><creator>Shkirskaya, S.A.</creator><creator>Butylskii, D.Yu</creator><creator>Dotsenko, V.V.</creator><creator>Safronova, E.Yu</creator><creator>Yaroslavtsev, A.B.</creator><creator>Deabate, S.</creator><creator>Huguet, P.</creator><creator>Nikonenko, V.V.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-0003-0288</orcidid><orcidid>https://orcid.org/0000-0001-7163-0497</orcidid><orcidid>https://orcid.org/0000-0001-6344-298X</orcidid><orcidid>https://orcid.org/0000-0001-8195-7223</orcidid><orcidid>https://orcid.org/0000-0001-8446-6198</orcidid><orcidid>https://orcid.org/0000-0002-9881-7494</orcidid></search><sort><creationdate>20210220</creationdate><title>Physicochemical and electrochemical characterization of Nafion-type membranes with embedded silica nanoparticles: Effect of functionalization</title><author>Porozhnyy, M.V. ; Shkirskaya, S.A. ; Butylskii, D.Yu ; Dotsenko, V.V. ; Safronova, E.Yu ; Yaroslavtsev, A.B. ; Deabate, S. ; Huguet, P. ; Nikonenko, V.V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-d9b67dfd8101370596e2b4cf22338d8430386a176968e731c1b556aab256e56e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Charge density</topic><topic>Chemical Sciences</topic><topic>Contact angle</topic><topic>Desalination</topic><topic>Electric contacts</topic><topic>Electric double layer</topic><topic>Electric potential</topic><topic>Electrochemical analysis</topic><topic>Electrochemical properties</topic><topic>Ion-exchange membrane</topic><topic>Material chemistry</topic><topic>Membrane structures</topic><topic>Membranes</topic><topic>Microheterogeneous</topic><topic>Nanoparticles</topic><topic>Permeability</topic><topic>Silica nanoparticles</topic><topic>Silicon dioxide</topic><topic>Space charge</topic><topic>Surface charge</topic><topic>Voltage</topic><topic>Water splitting</topic><topic>Water treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Porozhnyy, M.V.</creatorcontrib><creatorcontrib>Shkirskaya, S.A.</creatorcontrib><creatorcontrib>Butylskii, D.Yu</creatorcontrib><creatorcontrib>Dotsenko, V.V.</creatorcontrib><creatorcontrib>Safronova, E.Yu</creatorcontrib><creatorcontrib>Yaroslavtsev, A.B.</creatorcontrib><creatorcontrib>Deabate, S.</creatorcontrib><creatorcontrib>Huguet, P.</creatorcontrib><creatorcontrib>Nikonenko, V.V.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Porozhnyy, M.V.</au><au>Shkirskaya, S.A.</au><au>Butylskii, D.Yu</au><au>Dotsenko, V.V.</au><au>Safronova, E.Yu</au><au>Yaroslavtsev, A.B.</au><au>Deabate, S.</au><au>Huguet, P.</au><au>Nikonenko, V.V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physicochemical and electrochemical characterization of Nafion-type membranes with embedded silica nanoparticles: Effect of functionalization</atitle><jtitle>Electrochimica acta</jtitle><date>2021-02-20</date><risdate>2021</risdate><volume>370</volume><spage>137689</spage><pages>137689-</pages><artnum>137689</artnum><issn>0013-4686</issn><eissn>1873-3859</eissn><abstract>Introduction of nanoparticles in membranes allows a significant enhancement of their performance in energy production, water treatment and other applications. However, the effect of nanoparticles’ surface functionalization and the mechanism of their impact on membrane properties remain poorly studied. In this paper, we examine a Nafion-based membrane and its modifications, each containing 3 wt% SiO2. The effect of functionalization by propyl, 3-aminopropyl and 3,3,3-trifluoropropyl is investigated. The water uptake, contact angle, conductivity, diffusion permeability to NaCl, current-voltage curves (CVC), chronopotentiograms (ChP), and the difference between the pH of the desalination compartment output and input solutions (characterizing the water splitting rate) are reported. It is found that the doping of the membranes with nanoparticles leads to increasing their conductivity in all cases except 3-aminopropyl, which imparts a positive charge to the nanoparticles; the diffusion permeability decreases and permselectivity increases in all cases. The latter is explained by transformation of the mesoporous membrane structure to the microporous one. The impact of nanoparticles on the membrane conductivity, CVC and ChP is mainly caused by an additional (positive) space charge introduced into the pore solution and at the membrane surface by the electric double layer surrounding the nanoparticles. The greater the surface charge density of the nanoparticles and the smaller their size, the stronger the impact. Accordingly, the highest conductivity, current density at a low fixed voltage and chronopotentiometric transition time are shown by the sample doped with SiO2 and 3,3,3-trifluoropropyl. The interplay between electroconvection and water splitting phenomena is discussed.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2020.137689</doi><orcidid>https://orcid.org/0000-0003-0003-0288</orcidid><orcidid>https://orcid.org/0000-0001-7163-0497</orcidid><orcidid>https://orcid.org/0000-0001-6344-298X</orcidid><orcidid>https://orcid.org/0000-0001-8195-7223</orcidid><orcidid>https://orcid.org/0000-0001-8446-6198</orcidid><orcidid>https://orcid.org/0000-0002-9881-7494</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-4686
ispartof Electrochimica acta, 2021-02, Vol.370, p.137689, Article 137689
issn 0013-4686
1873-3859
language eng
recordid cdi_hal_primary_oai_HAL_hal_03709668v1
source ScienceDirect Journals (5 years ago - present)
subjects Charge density
Chemical Sciences
Contact angle
Desalination
Electric contacts
Electric double layer
Electric potential
Electrochemical analysis
Electrochemical properties
Ion-exchange membrane
Material chemistry
Membrane structures
Membranes
Microheterogeneous
Nanoparticles
Permeability
Silica nanoparticles
Silicon dioxide
Space charge
Surface charge
Voltage
Water splitting
Water treatment
title Physicochemical and electrochemical characterization of Nafion-type membranes with embedded silica nanoparticles: Effect of functionalization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T13%3A31%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physicochemical%20and%20electrochemical%20characterization%20of%20Nafion-type%20membranes%20with%20embedded%20silica%20nanoparticles:%20Effect%20of%20functionalization&rft.jtitle=Electrochimica%20acta&rft.au=Porozhnyy,%20M.V.&rft.date=2021-02-20&rft.volume=370&rft.spage=137689&rft.pages=137689-&rft.artnum=137689&rft.issn=0013-4686&rft.eissn=1873-3859&rft_id=info:doi/10.1016/j.electacta.2020.137689&rft_dat=%3Cproquest_hal_p%3E2505725532%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2505725532&rft_id=info:pmid/&rft_els_id=S001346862032082X&rfr_iscdi=true